Contribution of the intron retained in the Nxf1 gene transcript to the phylogeny of the order Chiroptera

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work is devoted to the possibilities of using a specific intron-containing block of the Nxf1 gene in phylogenetic studies.

Our attention was drawn to the conservative intron of the Nxf1 (nuclear export factor) gene. This intron is a part of an evolutionarily conserved block formed with flanking 110 bp and 37 bp exons, similar in representatives of various taxonomic groups. This evolutionary conservative block in our previous works was designated “cassette intron”. The Nxf1 genes are found in all representatives of Opisthokonta, and may be a convenient object for phylogenetic studies.

The Nxf1 gene sequences of seventeen representatives of the order Chiroptera obtained from publicly available databases (ensembl, ncbi). Alignment algorithm: MUSCLE. Programs: MEGA-X version 10.1.7, IQTree, Mesquite, MrBayes, and FigTree.v1.4.4. Estimation methods: Maximum Likelihood and Bayes Inference.

The use of Nxf1 gene sequences that include only exons or only introns leads to unequal loss of accuracy in establishing evolutionary relationships in comparison with the model based on the complete gene sequence. Sequences involving all exons plus a cassette intron give the same result as the complete Nxf1 gene sequence.

The obtained results indicate the importance of the cassette intron in the evolution of the Nxf1 gene of Chiroptera.

About the authors

Dmitrii D. Bondaruk

Saint-Petersburg State University

Author for correspondence.
Email: D.D.Bondaruk@yandex.ru
ORCID iD: 0000-0003-0265-5759
SPIN-code: 8162-8441

Postgraduate student

Russian Federation, Saint-Petersburg

Elena V. Golubkova

Saint Petersburg State University

Email: elena_golubkova@mail.ru
ORCID iD: 0000-0002-9528-5760
SPIN-code: 7386-1230
Scopus Author ID: 6602650894

Cand. Sci. (Biol.), Associate Professor, Department of Genetics and Biotechnology

Russian Federation, Saint Petersburg

Lyudmila A. Mamon

Saint Petersburg State University

Email: mamon@lm2010.spb.edu
ORCID iD: 0000-0001-5338-0703
SPIN-code: 7780-6907

Dr. Sci. (Biol.), Professor, Department of Genetics and Biotechnology

Russian Federation, Saint Petersburg

References

  1. Herold A, Suyama M, Rodrigues JP, et al. TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Mol Cell Biol. 2000;20(23):8996–9008. doi: 10.1128/MCB.20.23.8996-9008.2000
  2. Herold A, Teixeira L, Izaurralde E. Genome-wide analysis of nuclear mRNA export pathways in Drosophila. EMBO J. 2003;22(10):2472–2483. doi: 10.1093/emboj/cdg233
  3. Delaleau M, Borden KLB. Multiple Export Mechanisms for mRNAs. Cells. 2015;4(3):452–473. doi: 10.3390/cells4030452
  4. Herold A, Klymenko T, Izaurralde E. NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila. RNA. 2001;7(12):1768–1780.
  5. Ivankova N, Tretyakova I, Lyozin GT, et al. Alternative transcripts expressed by small bristles, the Drosophila melanogaster nxf1 gene. Gene. 2010;458(1–2):11–19. doi: 10.1016/j.gene.2010.02.013
  6. Sasaki M, Takeda E, Takano K, et al. Molecular cloning and functional characterization of mouse Nxf family gene products. Genomics. 2005;85(5):641–653. doi: 10.1016/j.ygeno.2005.01.003
  7. Mamon L, Ginanova V, Kliver S, et al. Organ-specific transcripts as a source of gene multifunctionality: lessons learned from the Drosophila melanogaster sbr (Dm nxf1) gene. Biol Commun. 2019;64(2). doi: 10.21638/spbu03.2019.206
  8. Kim E, Magen A, Ast G. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 2007;35(1):125–131. doi: 10.1093/nar/gkl924
  9. Mamon LA, Kliver SF, Prosovskaya AO, et al. The intron-containing transcript: an evolutionarily conserved characteristic of genes orthologous to nxf1 (Nuclear eXport Factor 1). Ecological genetics. 2013;11(3):3–13. (In Russ.) doi: 10.17816/ecogen1133-13
  10. Sugnet CW, Kent WJ, Ares M Jr, Haussler D. Transcriptome and genome conservation of alternative splicing events in humans and mice. Pac Symp Biocomput. 2004:66–77. doi: 10.1142/9789812704856_0007
  11. Schmitz U, Pinello N, Jia F, et al. Intron retention enhances gene regulatory complexity in vertebrates. Genome Biol. 2017;18:216. doi: 10.1186/s13059-017-1339-3
  12. Pimentel H, Parra M, Gee SL, et al. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Res. 2016;44(2):838–851. doi: 10.1093/nar/gkv1168
  13. Li Y, Bor Y-c, Misawa Y, et al. An intron with a constitutive transport element is retained in a Tap messenger RNA. Nature. 2006;443:234–237. doi: 10.1038/nature05107
  14. Li Y, Bor Y-c, Fitzgerald MP, et al. An NXF1 mRNA with a retained intron is expressed in hippocampal and neocortical neurons and is translated into a protein that functions as an Nxf1 cofactor. Mol Biol Cell. 2016;27(24):3791–3946. doi: 10.1091/mbc.E16-07-0515
  15. Galante PAF, Sakabe NJ, Kirschbaum-Slager N, de Souza SJ. Detection and evaluation of intron retention events in the human transcriptome. RNA. 2004;10(5):757–765. doi: 10.1261/rna.5123504
  16. Michael IP, Kurlender L, Memari N, et al. Intron retention: a common splicing event within the human kallikrein gene family. Clin Chem. 2005;51(3):506–515. doi: 10.1373/clinchem.2004.042341
  17. Chen M-Y, Liang D, Zhang P. Phylogenomic Resolution of the Phylogeny of Laurasiatherian Mammals: Exploring Phylogenetic Signals within Coding and Noncoding Sequences. Genome Biol EVol. 2017;9(8):1998–2012. doi: 10.1093/gbe/evx147
  18. Jarvis ED, Mirarab S, Aberer AJ, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346(6215):1320–1331. doi: 10.1126/science.1253451
  19. Yu L, Luan P-T, Jin W, et al. Phylogenetic utility of nuclear introns in interfamilial relationships of Caniformia (order Carnivora). Syst Biol. 2011;60(2):175–187. doi: 10.1093/sysbio/syq090
  20. Creer S. Choosing and using introns in molecular phylogenetics. Evol Bioinform. 2007;3:99–108. doi: 10.1177/117693430700300011
  21. Foley NM, Thong VD, Soisook P, et al. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol Biol EVol. 2015;32(2):313–333. doi: 10.1093/molbev/msu329
  22. Aibara S, Katahira J, Valkov E, Stewart M. The principal mRNA nuclear export factor NXF1: NXT1 forms a symmetric binding platform that facilitates export of retroviral CTE-RNA. Nucleic Acids Res. 2015;43(3):1883–1893. doi: 10.1093/nar/gkv032
  23. Wendt L, Brandt J, Bodmer BS, et al. The Ebola Virus Nucleoprotein Recruits the Nuclear RNA Export Factor NXF1 into Inclusion Bodies to Facilitate Viral Protein Expression. Cells. 2020;9(1):187. doi: 10.3390/cells9010187
  24. Kumar S, Stecher G, Li M, et al. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol EVol. 2018;35(6):1547–1549. doi: 10.1093/molbev/msy096
  25. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. doi: 10.1093/nar/gkh340
  26. Michener CD, Sokal RR. A quantitative approach to a problem in classification. Evolution. 1957;11(2):130–162. doi: 10.1111/j.1558-5646.1957.tb02884.x
  27. mesquiteproject.org [Internet]. Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. Version 3.70. 2021. Available from: http://www.mesquiteproject.org
  28. Huelsenbeck JP, Ronquist F. MrBayes 3: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754
  29. FigTree [Internet]. Molecular evolution, phylogenetics and epidemiology. 2022. Available from: http://tree.bio.ed.ac.uk/software/figtree/. Accessed June 20, 2022.
  30. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44(W1): W232–W235. doi: 10.1093/nar/gkw256
  31. Kalyaanamoorthy S, Minh BQ, Wong TKF, et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285
  32. Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control. 1974;19(6):716–723. doi: 10.1109/TAC.1974.1100705
  33. Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–464. doi: 10.1214/aos/1176344136
  34. Kimura M. Estimation of evolutionary distances between homologous nucleotide sequences. PNAS. 1981;78(1):454–458. doi: 10.1073/pnas.78.1.454
  35. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol EVol. 1980;16:111–120. doi: 10.1007/BF01731581
  36. Guindon S, Dufayard J-F, Lefort V, et al. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol. 2010;59(3):307–321. doi: 10.1093/sysbio/syq010
  37. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol Biol EVol. 2013;30(5):1188–1195. doi: 10.1093/molbev/mst024
  38. Hoang DT, Chernomor O, von Haeseler A, et al. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol EVol. 2018;35(2):518–522. doi: 10.1093/molbev/msx281
  39. Rodríguez F, Oliver JL, Marín A, Medina JR. The general stochastic model of nucleotide substitution. J Theor Biol. 1990;142(4): 485–501. doi: 10.1016/s0022–5193(05)80104-3
  40. Lanave C, Preparata G, Sacone C, Serio G. A new method for calculating evolutionary substitution rates. J Mol EVol. 1984;20:86–93. doi: 10.1007/BF02101990
  41. Gu X, Fu YX, Li WH. Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol Biol EVol. 1995;12(4):546–557. doi: 10.1093/oxfordjournals.molbev.a040235
  42. Lemoine F, Domelevo Entfellner J-B, Wilkinson E, et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature. 2018;556:452–456. doi: 10.1038/s41586-018-0043-0
  43. Tsagkogeorga G, Parker J, Stupka E, et al. Phylogenomic analyses elucidate the evolutionary relationships of bats. Curr Biol. 2013;23(22):2262–2267. doi: 10.1016/j.cub.2013.09.014
  44. Lei M, Dong D. Phylogenomic analyses of bat subordinal relationships based on transcriptome data. Sci Rep. 2016;6:27726. doi: 10.1038/srep27726
  45. Farkašová H, Hron T, Pačes J, et al. Discovery of an endogenous Deltaretrovirus in the genome of long-fingered bats (Chiroptera: Miniopteridae). PNAS. 2017;114(12):3145–3150. doi: 10.1073/pnas.1621224114
  46. Miller-Butterworth CM, Murphy WJ, O’Brien SJ, et al. A Family Matter: Conclusive Resolution of the Taxonomic Position of the Long-Fingered Bats, Miniopterus. Mol Biol EVol. 2007;24(7):1553–1561. doi: 10.1093/molbev/msm076
  47. Agnarsson I, Zambrana-Torrelio CM, Flores-Saldana NP, May-Collado LJ. A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia). PLoS Curr. 2011;3: RRN1212. doi: 10.1371/currents.RRN1212
  48. Roehrs ZP, Lack JB, Van Den Bussche RA. Tribal phylogenetic relationships within Vespertilioninae (Chiroptera: Vespertilionidae) based on mitochondrial and nuclear sequence data. J Mammal. 2010;91(5):1073–1092. doi: 10.1644/09-MAMM-A-325.1
  49. Zhang Q, Edwards SV. The evolution of intron size in amniotes: a role for powered flight? Genome Biol EVol. 2012;4(10):1033–1043. doi: 10.1093/gbe/evs070

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Variants of the sequence used in the experiment. 1 — Full-gene sequence; 2 — exons only; 3 — exons and intron 10; 4 — intron 10 and exons 10, 11; 5 — intron 10 (cassette intron); 6 — exons 10, 11; 7 — excluding intron 10 (cassette intron); 8 — only introns, except intron 10 (cassette intron). Non-coding exons at the 5' and 3' ends are including in sequences

Download (181KB)
3. Fig. 2. Phylogenetic tree based on the full-gene sequence variant of the Chiroptera’s Nxf1 gene. The tree was constructed by maximum likelihood and Bayesian methods. Support ratios are denoted as SH-Like aLTR/Bootstrap and the Bayesian posterior value. Large families are color coded. The branch order within highlighted areas remains unchanged in all considered schemes or the reasons for its violation are determined and individual nodes can be considered allowed. The above designations are common to this and all following figures

Download (268KB)
4. Fig. 3. Phylogenetic tree based on the “only exons” sequence variant of the Chiroptera’s Nxf1 gene

Download (256KB)
5. Fig. 4. Phylogenetic tree based on the “intron 10 and exons 10, 11” sequence variant of the Chiroptera’s Nxf1 gene

Download (264KB)
6. Appendix 1. Phylogenetic tree based on the “exons and intron 10” sequence variant of the Chiroptera’s Nxf1 gene

Download (369KB)
7. Appendix 2. Phylogenetic tree based on the “only intron 10 (cassette intron)” sequence variant of the Chiroptera’s Nxf1 gene

Download (255KB)
8. Appendix 3. Phylogenetic tree based on the “exons 10, 11” sequence variant of the Chiroptera’s Nxf1 gene

Download (273KB)
9. Appendix 4. Phylogenetic tree based on the “excluding intron 10 (cassette intron)” sequence variant of the Chiroptera’s Nxf1 gene

Download (229KB)
10. Appendix 5. Phylogenetic tree based on the “only introns, except intron 10 (cassette intron)” sequence variant of the Chiroptera’s Nxf1 gene

Download (194KB)

Copyright (c) 2022 Bondaruk D.D., Golubkova E.V., Mamon L.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies