Genetic mechanisms underlying the expansion of soybean Glycine max (L.) Merr. cultivation to the north

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Soybean [Glycine max (L.) Merr.] is produced in 93 countries of the world on 120.5 million hectares. The production area of the crop is located between 56°N. (Russian Federation) and 35-37°S (Argentina). In the gene pool of the crop, there is a wide variety of genotypes of different maturity groups, which every has a relatively narrow latitudinal adaptability, which depends on heat and moisture supply and the duration of photoperiod. An urgent problem of our time is the creation of early maturated varieties which allow to expand soybean cultivation to the north. In soybean 12 major loci (E1–E11 and J) have been identified, which control the flowering initiation and the response to the photoperiod. The time of maturation, photothermal response and, ultimately, the adaptation of the crop to different latitudes also depend on various allelic combinations and the interaction of these loci. All these loci have been mapped, and for some of them genes have been identified, their allelic diversity has been characterized and the mechanisms of their functioning and interaction have been described. But the molecular-genetic nature of the early maturity of soybean has not yet been revealed in detail. This review presents the current understanding of the structure and nature of the interaction of molecular genetic determinants of early maturity of soybean, which regulate the timing of its flowering and maturation at different photoperiods and their influence on other plant traits, including the type of growth and productivity. As a result, an idea of the optimal genotype for northern latitudes was proposed, with a combination of alleles providing the earliest flowering and maturation in relatively northern regions with a long day.

About the authors

Jaroslava V. Fedorina

Sirius University of Science and Technology

Email: f.jaroslava@gmail.com
ORCID iD: 0000-0003-0215-7928
SPIN-code: 7993-4540
Scopus Author ID: 57105740200

Researcher

Russian Federation, Sochi

Elena K. Khlestkina

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: director@vir.nw.ru
ORCID iD: 0000-0002-8470-8254
SPIN-code: 3061-1429
Scopus Author ID: 6603368411
ResearcherId: T-2734-2017

Dr. Sci. (Biol.), Professor, Director

Russian Federation, Saint Petersburg

Irina V. Seferova

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Author for correspondence.
Email: i.seferova@vir.nw.ru
SPIN-code: 5061-9712
Scopus Author ID: 57144617000

Cand. Sci. (Biol.), Researcher

Russian Federation, Saint Petersburg

Margarita A. Vishnyakova

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: m.vishnyakova@vir.nw.ru
ORCID iD: 0000-0003-2808-7745
SPIN-code: 2802-9614
Scopus Author ID: 6603209207

Dr. Sci. (Biol.), Chief Researcher, Head of Department

Russian Federation, Saint Petersburg

References

  1. Faostat [Internet]. Crops and livestock products [cited: 2021 Jan 1]. Available from: www.fao.org/faostat/en/#data/QCL
  2. Vavilov NI. Botaniko-geograficheskie osnovy selektsii. Moscow; Leningrad: Sel’khozgiz, 1935. 60 p. (In Russ.)
  3. Garner WW, Allard HA. Photoperiodic response of soybeans in relation to temperature and other environmental factors. J Agric Res. 1930;41(10):719–735.
  4. Board JE, Hall W. Premature flowering in soybean yield reductions at non optimal planting dates as influenced by temperature and photoperiod. Agron J. 1984;76(4):700–704. doi: 10.2134/agronj1984.00021962007600040043x
  5. Seddigh M, Jolliff GD, Orf JH. Night temperature effects on soybean phenology. Crop Sci. 1989;29(2):400–406. doi: 10.2135/cropsci1989.0011183X002900020033x
  6. Seferova IV. Soybean in the north-west of the Russian Federation. Maslichnye kul’tury. Nauchno-tekhnicheskii byulleten’ VNIIMK. 2016;(3):101–105. (In Russ.)
  7. Neumaier N, James AT. Exploiting the long-juvenile trait to improve adaptation of soybeans to the tropics. ACIAR Food Legume Newsletter. 1993;18:12–14.
  8. Destro D, Carpentieri-Pipolo V, Kiihl RAS, Almeida LA. Photoperiodism and genetic control of the long juvenile period in soybean: a review. Crop Breed Appl Technol. 2001;1(1):72–92. doi: 10.13082/1984-7033.v01n01a10
  9. Shchelko L, Sedova T, Korneichuk V, et al. Mezhdunarodnyi klassifikator SEHV roda Glycine Willd. Leningrad: VIR, 1990. 38 p. (In Russ.)
  10. Training.ars-grin.gov [Internet]. Soybean. Descriptor: Maturity group (MATGROUP). Agricultural Research Service. United States Department of Agriculture [cited: 2021 Jul 12]. Available from: training.ars-grin.gov/gringlobal/descriptordetail?id=51055
  11. Jia H, Jiang B, Wu C, et al. Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions. PLoS One. 2014;9(4):1–9. doi: 10.1371/journal.pone.0094139
  12. Seferova IV. Ultra early soybean cultivars on the northern border of potentially possible seed maturation. Book of abstracts of the International Conference “125 Years of Applied Botany in Russia”. 25–28 Nov 2019; Saint Petersburg. Saint Petersburg: VIR, 2019. P. 186. (In Russ.) doi: 10.30901/978-5-907145-39-9
  13. Bernard RL. Two major genes for time of flowering and maturity in soybeans. Crop Sci. 1971;11(2):242–244. doi: 10.2135/cropsci1971.0011183X001100020022x
  14. Buzzell RI. Inheritance of a soybean flowering response to fluorescent day length conditions. Can J Genet Cytol. 1971;13(4):703–707. doi: 10.1139/g71-100
  15. Buzzel RI, Voldeng HD. Inheritance of insensitivity to long day length. Soybean Genet Newsl. 1980;7(1):26–29.
  16. McBlain BA, Bernard RL. A new gene affecting the time of flowering maturity in soybeans. J Hered. 1987;178(3):160–162. doi: 10.1093/oxfordjournals.jhered.a110349
  17. Ray JD, Hinson K, Mankono JEB, Malo MF. Genetic control of a long-juvenile trait in soybean. Crop Sci. 1995;35(4):1001–1006. doi: 10.2135/cropsci1995.0011183X003500040012x
  18. Bonato ER, Vello NA. E6 a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol. 1999;22(2): 229–232. doi: 10.1590/s1415-47571999000200016
  19. Cober ER, Voldeng HD. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci. 2001;41(3): 698–701. doi: 10.2135/cropsci2001.413698x
  20. Cober ER, Molnar SJ, Charette M, Voldeng HD. A New Locus for Early Maturity in Soybean. Crop Sci. 2010;50(2):524–527. doi: 10.2135/cropsci2009.04.0174
  21. Kong F, Nan H, Cao D, et al. A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci. 2014;54(6): 2529–2535. doi: 10.2135/cropsci2014.03.0228
  22. Zhao C, Takeshima R, Zhu J, et al. A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a Flowering Locus T ortholog. BMC Plant Biol. 2016;16(1):20. doi: 10.1186/s12870-016-0704-9
  23. Cao D, Takeshima R, Zhao C, et al. Molecular mechanisms of flowering under long days and stem growth habit in soybean. J Exp Bot. 2017;68(8):1873–1884. doi: 10.1093/jxb/erw394
  24. Samanfar B, Molnar SJ, Charette M, et al. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet. 2017;130:377–390. doi: 10.1007/s00122-016-2819-7
  25. Wang F, Nan H, Chen L, et al. A new dominant locus, E11, controls early flowering time and maturity in soybean. Mol Breed. 2019;39:70. doi: 10.1007/s11032-019-0978-3
  26. Zhang S-R, Wang H, Wang Z, et al. Photoperiodism dynamics during the domestication and improvement of soybean. Sci China Life Sci. 2017;60:1416–1427. doi: 10.1007/s11427-016-9154-x
  27. Xia Z, Watanabe S, Yamada T, Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA. 2012;109(32): E2155–E2164. doi: 10.1073/pnas.1117982109
  28. Tsubokura Y, Watanabe S, Xia Z, et al. Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot. 2014;113(3):429–441. doi: 10.1093/aob/mct269
  29. Sequence Read Archive [Internet]. National Center for Biotechnology Information [cited: 2021 Jul 12]. Available from: https://www.ncbi.nlm.nih.gov/sra/
  30. Schmutz J, Cannon SB, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278): 178–183. doi: 10.1038/nature08670
  31. Kim MY, Lee S, Van K, et al. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci USA. 2010;107(51): 22032–22037. doi: 10.1073/pnas.1009526107
  32. Keim P, Diers BW, Olson TC, Shoemaker RC. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics. 1990;126(3):735–742. doi: 10.1093/genetics/126.3.735
  33. Orf JH, Chase K, Jarvik T, et al. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci. 1999;39(6):1642–1651. doi: 10.2135/cropsci1999.3961642x
  34. Lee SH, Bailey MA, Mian MAR, et al. Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci. 1996;36(3):728–735. doi: 10.2135/cropsci1996.0011183x003600030035x
  35. Tasma IM, Lorenzen LL, Green DE, Shoemaker RC. Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Mol Breed. 2001;8(1):25–35. doi: 10.1023/A:1011998116037
  36. Yamanaka N, Ninomiy S, Hoshi M, et al. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res. 2001;8(2):61–72. doi: 10.1093/dnares/8.2.61
  37. Wang D, Graef GL, Procopiuk AM, Diers WB. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet. 2004;108:458–467. doi: 10.1007/s00122-003-1449-z
  38. Watanabe S, Tadjuddin T, Yamanaka N, et al. Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed Sci. 2004;54(4):399–407. doi: 10.1270/jsbbs.54.399
  39. Zhang W-K, Wang Y-J, Luo G-Z, et al. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet. 2004;108:1131–1139. doi: 10.1007/s00122-003-1527-2
  40. Funatsuki H, Kawaguchi K, Matsuba S, et al. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet. 2005;111:851–861. doi: 10.1007/s00122-005-0007-2
  41. Githiri SM, Yang D, Khan NA, et al. QTL analysis of low temperature induced browning in soybean seed coats. J Hered. 2007;98(4):360–366. doi: 10.1093/jhered/esm042
  42. Khan NA, Githiri SM, Benitez ER, et al. QTL analysis of cleistogamy in soybean. Theor Appl Genet. 2008;117:479–487. doi: 10.1007/s00122-008-0792-5
  43. Liu B, Fujita T, Yan Z-H, et al. QTL Mapping of Domestication-related Traits in Soybean (Glycine max). Ann Bot. 2007;100(5): 1027–1038. doi: 10.1093/aob/mcm149
  44. Liu B, Abe J. QTL mapping for photoperiod insensitivity of a Japanese soybean landrace Sakamotowase. J Hered. 2010;101(2): 251–256. doi: 10.1093/jhered/esp113
  45. Cheng L, Wang Y, Zhang C, et al. Genetic analysis and QTL detection of reproductive period and post-flowering photoperiod responses in soybean. Theor Appl Genet. 2011;123:421–429. doi: 10.1007/s00122-011-1594-8
  46. Liu W, Kim MY, Kang YJ, et al. QTL identification of flowering time at three different latitudes reveals homeologous genomic regions that control flowering in soybean. Theor Appl Genet. 2011;123: 545–553. doi: 10.1007/s00122-011-1606-8
  47. Komatsu K, Hwang T-Y, Takahashi M, et al. Identification of QTL controlling post-flowering period in soybean. Breed Sci. 2012;61(5):646–652. doi: 10.1270/jsbbs.61.646
  48. Lu S, Li Y, Wang J, et al. QTL mapping for flowering time in different latitude in soybean. Euphytica. 2015;206:725–736. doi: 10.1007/s10681-015-1501-5
  49. Kong L, Lu S, Wang Y, et al. Quantitative trait locus mapping of flowering time and maturity in soybean using next-generation sequencing-based analysis. Front Plant Sci. 2018;9:1–20. doi: 10.3389/fpls.2018.00995
  50. Liu D, Yan Y, Fujita Y, et al. A major QTL (qFT12.1) allele from wild soybean delays flowering time // Mol Breed. 2018;38:4. doi: 10.1007/s11032-018-0808-z
  51. Fang C, Chen L, Nan H, et al. Rapid identification of consistent novel QTLs underlying long-juvenile trait in soybean by multiple genetic populations and genotyping-by-sequencing. Mol Breed. 2019;39:80. doi: 10.1007/s11032-019-0979-2
  52. Hayama R, Coupland G. The Molecular Basis of Diversity in the Photoperiodic Flowering Responses of Arabidopsis and Rice. Plant Physiol. 2004;135(2):677–684. doi: 10.1104/pp.104.042614
  53. Valverde F, Mouradov A, Soppe W, et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science. 2004;303(5660):1003–1006. doi: 10.1126/science.109176
  54. Tsuji H, Taoka K-I, Shimamoto K. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol. 2011;14(1):45–52. doi: 10.1016/j.pbi.2010.08.016
  55. Bouche F, Lobet G, Tocquin P, Perilleux C. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res. 2016;44(D1):D1167–D1171. doi: 10.1093/nar/gkv1054
  56. Jung C-H, Wong CE, Singh MB, Bhalla PL. Comparative genomic analysis of soybean flowering genes. PLoS One. 2012;7(6): e38250. doi: 10.1371/journal.pone.0038250
  57. Kim MY, Shin JH, Kang YJ, et al. Divergence of flowering genes in soybean. J Biosci. 2012;37:857–870. doi: 10.1007/s12038-012-9252-0
  58. Liu B, Kanazawa A, Matsumura H, et al. Genetic redundancy in soybean photoresponses associated with duplication of phytochrome A gene. Genetics. 2008;180(2):996–1007. doi: 10.1534/genetics.108.092742
  59. Watanabe S, Hideshima R, Xia Z, et al. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics. 2009;182(4):1251–1262. doi: 10.1534/genetics.108.098772
  60. Watanabe S, Xia Z, Hideshima R, et al. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics. 2011;188(2):395–407. doi: 10.1534/genetics.110.125062
  61. Tsubokura Y, Matsumura H, Xu M, et al. Genetic variation in soybean at the maturity locus E4 is involved in adaptation to long days at high latitudes. Agronomy. 2013;3(1):117–134. doi: 10.3390/agronomy3010117
  62. Xu M, Xu Z, Liu B, et al. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol. 2013;13:91. doi: 10.1186/1471-2229-13-91
  63. Molnar SJ, Rai S, Charette M, Cober ER. Simple sequence repeat (SSR) markers linked to E1, E3, E4, and E7 maturity genes in soybean. Genome. 2003;46(6):1024–1036. doi: 10.1139/g03-079
  64. Watanabe S, Tsukamoto C, Oshita T, et al. Identification of quantitative trait loci for flowering time by a combination of restriction site-associated DNA sequencing and bulked segregant analysis in soybean. Breed Sci. 2017;67(3):277–285. doi: 10.1270/jsbbs.17013
  65. Cober E.R., Morrison M.J. Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theor Appl Genet. 2010;120(5):1005–1012. doi: 10.1007/s00122-009-1228-6
  66. Lu S, Zhao X, Hu Y, et al. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet. 2017;49:773–779. doi: 10.1038/ng.3819
  67. Yue Y, Liu N, Jiang B, et al. A single nucleotide deletion in J encoding GmELF3 confers long juvenility and is associated with adaption of tropic soybean. Molecular Plant. 2017;10(4):656–658. doi: 10.1016/j.molp.2016.12.004
  68. McBlain BA, Hesketh JD, Bernard RL. Genetic effect on reproductive phenology in soybean isolines differing in maturity genes. Can J Plant Sci. 1987;67(1):105–115. doi: 10.4141/cjps87-012
  69. Wang Y, Wu CX, Zhang XM, et al. Effects of soybean major maturity genes under different photoperiods. Acta agronomica sinica. 2008;34(7):1160–116. doi: 10.3724/SP.J.1006.2008.01160
  70. Whigham DK, Minor HC, Carmen SG. Effects of environment and management on soybean performance in the tropics1. Agronomy J. 1978;70(4):587–592. doi: 10.2134/agronj1978.00021962007000040017x
  71. Egli DB. Seed biology and the yield of grain crops. Wallingford, UK: CAB International, 1998.
  72. Severin AJ, Woody JL, Bolon Y-T, et al. RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome. BMC Plant Biol. 2010;10:160. doi: 10.1186/1471-2229-10-160
  73. Libault M, Farmer A, Joshi T, et al. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J. 2010;63(1):86–99. doi: 10.1111/j.1365-313X.2010.04222.x
  74. Upadhyay AP, Ellis RH, Summerfield RJ, et al. Characterization of photothermal flowering responses in maturity isolines of soyabean [Glycine max (L.) Merrill] cv. Clark. Ann Bot. 1994;74(1):87–96. doi: 10.1006/anbo.1994.1097
  75. Thakare D, Kumudini S, Dinkins RD. Expression of flowering- time genes in soybean E1 near-isogenic lines under short and long day conditions. Planta. 2010;231:951–963. doi: 10.1007/s00425-010-1100-6
  76. Zhou Z, Jiang Y, Wang Z, et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol. 2015;33:408–414. doi: 10.1038/nbt.3096
  77. Langewisch T, Zhang H, Vincent R, et al. Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes. PLoS One. 2014;9(4): e94150. doi: 10.1371/journal.pone.0094150
  78. Xu M, Yamagishi N, Zhao C, et al. The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of Flowering Locus T orthologs. Plant Physiol. 2015;168(4):1735–1746. doi: 10.1104/pp.15.00763
  79. Zhu J, Takeshima R, Harigai K, et al. Loss of function of the E1-Like-b gene associates with early flowering under long-day conditions in soybean. Front Plant Sci. 2019;9:1867. doi: 10.3389/fpls.2018.01867
  80. Zhai H, Lü S, Wu H, et al. Diurnal expression pattern, allelic variation, and association analysis reveal functional features of the E1 gene in control of photoperiodic flowering in soybean. PLoS One. 2015;10(8): e0135909. doi: 10.1371/journal.pone.0135909
  81. Zhang X, Zhai H, Wang Y, et al. Functional conservation and diversification of the soybean maturity gene E1 and its homologs in legumes. Sci Rep. 2016;6:29548. doi: 10.1038/srep29548
  82. Wang Y, Gu Y, Gao H, et al. Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. BMC Evol Biol. 2016;16:79. doi: 10.1186/s12862-016-0653-9
  83. Cober ER, Tanner JW, Voldeng HD. Soybean photoperiod-sensitivity loci respond differentially to light quality. Crop Sci. 1996;36(3): 606–610. doi: 10.2135/cropsci1996.0011183x003600030014x
  84. Kanazawa A, Liu B, Kong F, et al. Adaptive evolution involving gene duplication and insertion of a novel Ty1/copia-like retrotransposon in soybean. J Mol Evol. 2009;69:164–175. doi: 10.1007/s00239-009-9262-1
  85. Li Y-H, Zhou G, Ma J, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol. 2014;32:1045–1052. doi: 10.1038/nbt.2979
  86. Cober ER, Tanner JW, Voldeng HD. Genetic control of photoperiod response in early-maturing near-isogenic soybean lines. Crop Sci. 1996;36(3):601–605. doi: 10.2135/cropsci1996.0011183x003600030013x
  87. Dissanayaka A, Rodriguez TO, Di S, et al. Quantitative trait locus mapping of soybean maturity gene E5. Breed Sci. 2016;66(3): 407–415. doi: 10.1270/jsbbs.15160
  88. Li X, Fang C, Xu M, et al. Quantitative trait locus mapping of soybean maturity gene E6. Crop Sci. 2017;57(5):2547–2554. doi: 10.2135/cropsci2017.02.0106
  89. Zagotta MT, Hicks KA, Jacobs CI, et al. The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. 1996;10(4):691–702. doi: 10.1046/j.1365-313x.1996.10040691.x
  90. Yu J-W, Rubio V, Lee N-Y, et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell. 2008;32(5):617–630. doi: 10.1016/j.molcel.2008.09.026
  91. Matsumura H, Kitajima H, Akada S, et al. Molecular cloning and linkage mapping of cryptochrome multigene family in soybean. The Plant Genome. 2009;2(3):271. doi: 10.3835/plantgenome.2009.06.0018
  92. Zhang Q, Li H, Li R, et al. Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci USA. 2008;105(52): 21028–21033. doi: 10.1073/pnas.0810585105
  93. Guo H, Yang H, Mockler TC, Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science. 1998;279(5355):1360–1363. doi: 10.1126/science.279.5355.1360
  94. Kong F, Liu B, Xia Z, et al. Two coordinately regulated homologs of FLOWERING LOCUS Tare involved in the control of photoperiodic flowering in soybean. Plant Physiol. 2010;154(3):1220–1231. doi: 10.1104/pp.110.160796
  95. Wu F, Sedivy EJ, Price WB, et al. Evolutionary trajectories of duplicated FT homologues and their roles in soybean domestication. Plant J. 2017;90(5):941–953. doi: 10.1111/tpj.13521
  96. Cai Y, Wang L, Chen L, et al. Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol J. 2020;18(1): 298–309. doi: 10.1111/pbi.13199
  97. Cai Y, Chen L, Liu X, et al. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J. 2018;16(1):176–185. doi: 10.1111/pbi.12758
  98. Cao D, Li Y, Lu S, et al. GmCOL1a and GmCOL1b function as flowering repressors in soybean under long-day conditions. Plant Cell Physiol. 2015;56(12):2409–2422. doi: 10.1093/pcp/pcv152
  99. Chen L, Cai Y, Qu M, et al. Soybean adaption to high-latitude regions is associated with natural variations of GmFT2b, an ortholog of Flowering Locus T. Plant Cell Environ. 2020;43(4):934–944. doi: 10.1111/pce.13695
  100. Zhai H, Lü S, Liang S, et al. GmFT4, a homolog of Flowering Locus T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS One. 2014;9(2): e89030. doi: 10.1371/journal.pone.0089030
  101. Wickland DP, Hanzawa Y. The Flowering Locus T/Terminal Flower 1 gene family: functional evolution and molecular mechanisms. Mol Plant. 2015;8(7):983–997. doi: 10.1016/j.molp.2015.01.007
  102. Yamanaka N, Watanabe S, Toda K, et al. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet. 2005;110:634–639. doi: 10.1007/s00122-004-1886-3
  103. Soybase.org [Internet]. SoyBase, Integrating Genetics and Genomics to Advance Soybean Research [cited: 2021 Jul 12]. Available from: https://www.soybase.org/soybaselist/index.php
  104. Takeshima R, Hayashi T, Zhu J, et al. A soybean quantitative trait locus that promotes flowering under long days is identified as FT5a, a Flowering Locus T ortholog. J Exp Bot. 2016;67(17): 5247–5258. doi: 10.1093/jxb/erw283
  105. Wang L, Sun S, Wu T, et al. Natural variation and СRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol J. 2020;18(9):1869–1881. doi: 10.1111/pbi.13346
  106. Takahashi R, Abe J. Soybean maturity genes associated with seed coat pigmentation and cracking in response to low temperatures. Crop Sci. 1999;39(6):1657–1662. doi: 10.2135/cropsci1999.3961657x
  107. Sedivy EJ, Akpertey A, Vela A, et al. Identification of non-pleiotropic loci in flowering and maturity control in soybean. Agronomy. 2020;10(8):1204. doi: 10.3390/agronomy10081204
  108. Pan L, He J, Zhao T, et al. Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure. Theor Appl Genet. 2018;131: 2581–2599. doi: 10.1007/s00122-018-3174-7
  109. Liu W, Jiang B, Ma L, et al. Functional diversification of Flowering Locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytologist. 2017;217(3):1335–1345. doi: 10.1111/nph.14884
  110. Saindon G, Beversdorf WD, Voldeng HD. Adjustment of the soybean phenology using the E4 locus. Crop Sci. 1989;29(6):1361–1365. doi: 10.2135/cropsci1989.0011183x002900060006x
  111. Zhai H, Lü S, Wang Y, et al. Allelic variations at four major maturity e genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars. PLoS One. 2014;9(5): e97636. doi: 10.1371/journal.pone.0097636
  112. Jiang B, Nan H, Gao Y, et al. Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS One. 2014;9(8):e106042. doi: 10.1371/journal.pone.0106042
  113. Voldeng HD, Saindon G. Registration of seven long-daylength insensitive soybean genetic stocks. Crop Sci. 1991;31(5):1399. doi: 10.2135/cropsci1991.0011183x003100050095x
  114. Abe J, Xu D, Miyano A, et al. Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci. 2003;43(4):1300–1304. doi: 10.2135/cropsci2003.1300
  115. Han TF, Wang JL. Studies on the post flowering photoperiodic responses in soybean. Acta Bot Sin. 1995;37(11):863–869.
  116. Egli DB. Time and the productivity of agronomic crops and cropping systems. Agron J. 2011;103(3):743–750. doi: 10.2134/agronj2010.0508
  117. Kurasch AK, Hahn V, Leiser WL, et al. Identification of mega-environments in Europe and effect of allelic variation at maturity E loci on adaptation of European soybean. Plant Cell Environ. 2017;40(5):765–778. doi: 10.1111/pce.12896
  118. Sun H, Jia Z, Cao D, et al. GmFT2a, a soybean homolog of Flowering Locus T, is involved in flowering transition and maintenance. PLoS One. 2011;6(12):18–20. doi: 10.1371/journal.pone.0029238
  119. Kumawat G, Yadav A, Satpute GK, et al. Genetic relationship, population structure analysis and allelic characterization of flowering and maturity genes E1, E2, E3 and E4 among 90 Indian soybean landraces. Physiol Mol Biol Plants. 2019;25:387–398. doi: 10.1007/s12298-018-0615-3
  120. Gerasimova SV, Khlestkina EK, Kochetov AV, Shumny VK. Genome editing system CRISPR/CAS9 and peculiarities of its application in monocots. Fiziologiya rastenij. 2017;64(2):92–108. (In Russ.) doi: 10.1134/S1021443717010071

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Distribution of candidate genes that determine the beginning of flowering and associated QTLs in the soybean genome. Bars represent soybean chromosomes. Gray areas indicate areas containing QTLs, while darker areas show overlaps between different QTLs. The E1, E2, E3, E7, E8, E9, and J loci are shown on the left side of the chromosomes, with the corresponding molecular markers in black. Question marks next to the loci indicate that the corresponding genes for these QTLs remain unknown. The blue lines on the chromosomes indicate the position of the soy orthologues of flowering genes in Arabidopsis. Orthologs located in the QTL are labeled as Arabidopsis gene symbols in blue, and red letters indicate the characterized genes corresponding to the QTL (according to: Zhang et al., 2017 [26])

Download (338KB)
3. Figure 2. Regulation of the transition of development from vegetative to reproductive in soybean under long day (LD) and short day (KD) conditions. Arrows — stimulation of gene expression under the influence of DD. Gray T-shaped - inhibition of gene expression under the influence of DD. The crossed out black arrow indicates the absence of gene stimulation in CD. The crossed out T-shaped line is the absence of gene inhibition on CD. Black T-shaped line — no effect of CD on the E1 gene. Broad arrows - the final influence of genes on plant development

Download (101KB)

Copyright (c) 2022 Fedorina J.V., Khlestkina E.K., Seferova I.V., Vishnyakova M.A.


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies