Genotoxic properties of hypoglycemic drugs (systematic review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

According to the literature genotoxic properties of about a half of hypoglycemic drugs have not been investigated in accordance with the recommended methodology, and studies of the mutagen-modifying activity of antidiabetic drugs are sporadic. Based on the available published data, it is impossible to conclude about either presence or absence of genotoxic / antigenotoxic potential of antidiabetic drugs. There is evidence of the antimutagenic activity of metformin; in relation to other drugs, studies of mutagen-modifying activity have not been carried out or are represented only by a few articles. Further study of the genotoxic properties of hypoglycemic drugs is required in accordance with modern approaches and requirements, as well as an assessment of their mutagen-modifying activity.

About the authors

Natalia V. Eremina

Zakusov Research Institute of Pharmacology

Email: nnv1988@gmail.com
ORCID iD: 0000-0002-7226-5505
SPIN-code: 5224-1968

Cand. Sci. (Biol.), senior research associate

Russian Federation, 8 Baltiyskaya str., 125315, Moscow

Aliy K. Zhanataev

Zakusov Research Institute of Pharmacology

Email: zhanataev@academpharm.ru
ORCID iD: 0000-0002-7673-8672
SPIN-code: 7070-0510
Scopus Author ID: 6506103462

Cand. Sci. (Biol.), main researcher

Russian Federation, 8 Baltiyskaya str., 125315, Moscow

Artem A. Lisitsyn

Zakusov Research Institute of Pharmacology

Email: nordikal@yandex.ru
ORCID iD: 0000-0002-9597-6051
SPIN-code: 7857-1860
Scopus Author ID: 57216389600

researcher

Russian Federation, 8 Baltiyskaya str., 125315, Moscow

Andrey D. Durnev

Zakusov Research Institute of Pharmacology

Author for correspondence.
Email: addurnev@mail.ru
ORCID iD: 0000-0003-0218-8580
SPIN-code: 8426-0380
Scopus Author ID: 7006060753

Dr. Sci. (Med.), Professor, Corresponding Member of RAS

Russian Federation, 8 Baltiyskaya str., 125315, Moscow

References

  1. IDF Guide for Diabetes Epidemiology Studies [Internet] [cited 2021 May 15]. Available from: https://www.idf.org/our-activities/epidemiology-research/idf-guide-for-diabetes-epidemiology-studies.html
  2. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus – present and future perspectives. Nat Rev Endocrinol. 2011;8(4):228–236. doi: 10.1038/nrendo.2011.183
  3. Habib SL, Rojna M. Diabetes and risk of cancer. ISRN Oncol. 2013;2013:583786. doi: 10.1155/2013/583786
  4. Barone BB, Yeh HC, Snyder CF, et al. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA. 2008;300(23):2754–2764. doi: 10.1001/jama.2008.824
  5. Bonassi S, Znaor A, Norppa H, Hagmar L. Chromosomal aberrations and risk of cancer in humans: an epidemiologic perspective. Cytogenet Genome Res. 2004;104(1–4):376–382. doi: 10.1159/000077519
  6. Bonassi S, El-Zein R, Bolognesi C, Fenech M. Micronuclei frequency in peripheral blood lymphocytes and cancer risk: evidence from human studies. Mutagenesis. 2011;26(1):93–100. doi: 10.1093/mutage/geq075
  7. Eremina NV, Zhanataev AK, Lisitsyn AA, Durnev AD. Genotoxic markers in patients with diabetes mellitus (Literature review). Ecological genetics. 2021;19(2):143–168. (In Russ.) doi: 10.17816/ecogen65073
  8. Demirbag R, Yilmaz R, Gur M, et al. DNA damage in metabolic syndrome and its association with antioxidative and oxidative measurements. Int J Clin Pract. 2006;60(10):1187–1193. doi: 10.1111/j.1742-1241.2006.01042.x
  9. Balabolkin MI. Rol’ glikirovaniya belkov, okislitel’nogo stressa v patogeneze sosudistykh oslozhnenii pri sakharnom diabete. Diabetes mellitus. 2002;(4):8–16. (In Russ.) doi: 10.14341/DM200248-16
  10. Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative stress: pathogenetic role in diabetes mellitus and its complications development, therapeutic approaches to correction. Byulleten’ eksperimental’noj biologii i mediciny. 2021;171(2):136–149. (In Russ.) doi: 10.1007/s10517-021-05191-7
  11. Bigagli E, Lodovici M. Circulating Oxidative Stress Biomarkers in Clinical Studies on Type 2 Diabetes and Its Complications. Oxid Med Cell Longev. 2019;2019:5953685. doi: 10.1155/2019/5953685
  12. Durnev AD. Modifikatsiya mutatsionnogo protsessa v kletkakh cheloveka. Annals of the Russian academy of medical sciences. 2001;(10):70–76. (In Russ.)
  13. Anatomo-Terapevticheski-Khimicheskaya (ATKH) sistema klassifikatsii [Internet]. [cited 2021 May 15]. Available from: https://www.vidal.ru/drugs/atc (In Russ.)
  14. Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. Dedov II, Shestakova MV, Mayorov AYu, eds. 9th edition. Diabetes mellitus. 2019;22(1S1):1–144. (In Russ.) DOI: org/10.14341/DM221S1
  15. Othman EM, Leyh A, Stopper H. Insulin mediated DNA damage in mammalian colon cells and human lymphocytes in vitro. Mutat Res. 2013;745-746:34-9. doi: 10.1016/j.mrfmmm.2013.03.006
  16. Othman EM, Oli RG, Arias-Loza PA, et al. Metformin Protects Kidney Cells From Insulin-Mediated Genotoxicity In Vitro and in Male Zucker Diabetic Fatty Rats. Endocrinology. 2016;157(2):548–559. doi: 10.1210/en.2015-1572
  17. Tokajuk A, Krzyżanowska-Grycel E, Tokajuk A, et al. Antidiabetic drugs and risk of cancer. Pharmacol Rep. 2015;67(6):1240–1250. doi: 10.1016/j.pharep.2015.05.005
  18. Othman EM, Altabaa T, Hintzsche H, Stopper H. IR and IGF-1R expression affects insulin induced proliferation and DNA damage. Toxicol In Vitro. 2017;39:68–74. doi: 10.1016/J.TIV.2016.11.011
  19. HUMALOG® Product Monograph [Internet]. [cited 2021 May 15] Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjclZyw_KPvAhVGxIsKHZvlBE4QFjAOegQIBBAD&url=https%3A%2F%2Fpdf.hres.ca%2Fdpd_pm%2F00003299.PDF&usg=AOvVaw3qP_2gNpNQ3fN1X-CspEXC
  20. Center for drug evaluation and research. Insulin Aspart [rDNA Origin] Injection [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiEvp7egaTvAhVD_SoKHTjvCvkQFjACegQIBRAD&url=https%3A%2F%2Fwww.accessdata.fda.gov%2Fdrugsatfda_docs%2Fnda%2F2013 %2F020986Orig1s061.pdf&usg=AOvVaw3DAicbE-EHyrHrRmiEjIU6
  21. NovoRapid Approval Scientific discussion [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiEvp7egaTvAhVD_SoKHTjvCvkQFjAAegQIARAD&url=https%3A%2F%2Fwww.ema.europa.eu%2Fen%2Fdocuments%2Fscientific-discussion%2Fnovorapid-epar-scientific-discussion_en.pdf&usg=AOvVaw38mmTxmMGBpGUYcoSzhqTD
  22. Apidra Approval Scientific discussion [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiNzp6Ig6TvAhVC2SoKHRI8BzkQFjAAegQIARAD&url=https%3A%2F%2Fwww.ema.europa.eu%2Fdocuments%2Fscientific-discussion%2Fapidra-epar-scientific-discussion_en.pdf&usg=AOvVaw3viOO4MIxkPFOeYV0rt8Pc
  23. Center for drug evaluation and research. Application number 21–629. Pharmacology review [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiNzp6Ig6TvAhVC2SoKHRI8BzkQFjABegQIFhAD&url=https%3A%2F%2Fwww.accessdata.fda.gov%2Fdrugsatfda_docs%2Fnda%2F2004 %2F21-629_Apidra_Pharmr_P1.pdf&usg=AOvVaw0Xh-xiYWgUJMk6jWLchV2g
  24. Center for drug evaluation and research. Application number 21–536. Pharmacology review(s) [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwisgKqVhaTvAhUhlosKHeJDDgwQFjACegQIExAD&url=http%3A%2F%2Fwww.accessdata.fda.gov%2Fdrugsatfda_docs%2Fnda%2F2005 %2F021-536_Levemir_pharmr.pdf&usg=AOvVaw3rpOhO3TifQYrMyRFaC_xy
  25. Flevemir Approval Scientific discussion [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwisgKqVhaTvAhUhlosKHeJDDgwQFjAAegQIARAD&url=https%3A%2F%2Fwww.ema.europa.eu%2Fdocuments%2Fscientific-discussion%2Flevemir-epar-scientific-discussion_en.pdf&usg=AOvVaw2TiEsZCAKiZRdTFlfmzrdo
  26. Mironov AN. Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. Chast’. 1. Moscow: Grif i K, 2012. 944 p. (In Russ.)
  27. Renner HW, Münzner R. Mutagenicity of sulphonylureas. Mutat Res. 1980;77(4):349–355. doi: 10.1016/0165-1218(80)90007-5
  28. Kar RN, Mukherjee B, Mukherjee SK. Mutagenic evaluation of tolbutamide and glybenclamide on the bone marrow cells of mice. Toxicol Lett. 1986;34(2–3):153–157. doi: 10.1016/0378-4274(86)90205-5
  29. Sekena H, El-Aziem A, Hassan MA. Genetic and Ultrastructural studies in bone marrow and testis of mice cells under the effect of Glurenor drug. The Egyptian Journal of Hospital Medicine. 2003;12(1):62–71. doi: 10.21608/ejhm.2003.18246
  30. Bedir A, Aliyazicioglu Y, Bilgici B, et al. Assessment of genotoxicity in rats treated with the antidiabetic agent, pioglitazone. Environ Mol Mutagen. 2008;49(3):185–191. doi: 10.1002/em.20365
  31. Alzoubi K, Khabour O, Hussain N, et al. Evaluation of vitamin B12 effects on DNA damage induced by pioglitazone. Mutat Res. 2012;748(1–2):48–51. doi: 10.1016/j.mrgentox.2012.06.009
  32. Bedir A, Aliyazicioglu Y, Kahraman H, et al. Genotoxicity in rats treated with the antidiabetic agent, rosiglitazone. Environ Mol Mutagen. 2006;47(9):718–724. doi: 10.1002/em.20261
  33. Yuzbasioglu D, Enguzel-Alperen C, Unal F. Investigation of in vitro genotoxic effects of an anti-diabetic drug sitagliptin. Food Chem Toxicol. 2018;112:235–241. doi: 10.1016/j.fct.2018.01.003
  34. Nasri H, Rafieian-Kopaei M. Metformin: Current knowledge. J Res Med Sci. 2014;19(7):658–664. doi: 10.12659/MSMBR.889344
  35. Kalashnikova MF, Belousov DY, Suntsov YI, et al. Pharmacoepidemiological and pharmacoeconomic analyses of the utilization of hypoglycaemic drugs in patients with type 2 diabetes mellitus in Moscow. Diabetes mellitus. 2015;18(2):32–46. (In Russ.) doi: 10.14341/DM2015232-46
  36. Marshall SM. 60 years of metformin use: a glance at the past and a look to the future. Diabetologia. 2017;60(9):1561–1565. doi: 10.1007/s00125-017-4343-y
  37. Attia SM, Helal GK, Alhaider AA. Assessment of genomic instability in normal and diabetic rats treated with metformin. Chem Biol Interact. 2009;180(2):296–304. doi: 10.1016/j.cbi.2009.03.001
  38. Amador RR, Longo JP, Lacava ZG, et al. Metformin (dimethyl-biguanide) induced DNA damage in mammalian cells. Genet Mol Biol. 2012;35(1):153–158. doi: 10.1590/s1415-47572011005000060
  39. Malek HA, Hassanin A, Aziz HA, Dahtory FE. In vitro assessment of the mutagenic effect of Metformin. J Chem Pharm Res. 2015;7(6):879–886.
  40. Sant’Anna JR, Yajima JP, Rosada LJ, et al. Metformin’s performance in in vitro and in vivo genetic toxicology studies. Exp Biol Med (Maywood). 2013;238(7):803–810. doi: 10.1177/1535370213480744
  41. Rabbani SI, Devi K, Khanam S. Role of Pioglitazone with Metformin or Glimepiride on Oxidative Stress-induced Nuclear Damage and Reproductive Toxicity in Diabetic Rats. Malays J Med Sci. 2010;17(1):3–11.
  42. OECD. Test No. 489: In Vivo Mammalian Alkaline Comet Assay. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing, Paris. 2016. https://doi.org/10.1787/9789264264885-en
  43. Najafi M, Cheki M, Rezapoor S, et al. Metformin: Prevention of genomic instability and cancer: A review. Mutat Res Genet Toxicol Environ Mutagen. 2018;827:1–8. doi: 10.1016/j.mrgentox.2018.01.007
  44. Aleisa AM, Al-Rejaie SS, Bakheet SA, et al. Effect of metformin on clastogenic and biochemical changes induced by adriamycin in Swiss albino mice. Mutat Res. 2007;634(1–2):93–100. doi: 10.1016/j.mrgentox.2007.06.005
  45. Cheki M, Shirazi A, Mahmoudzadeh A, et al. The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. Mutat Res. 2016;809:24–32. doi: 10.1016/j.mrgentox.2016.09.001
  46. Kanigür-Sultuybek G, Ozdas SB, Curgunlu A, et al. Does metformin prevent short-term oxidant-induced dna damage? In vitro study on lymphocytes from aged subjects. J Basic Clin Physiol Pharmacol. 2007;18(2):129–140. doi: 10.1515/jbcpp.2007.18.2.129
  47. Roshdy HM, Kassem SM. Genetic effects of Januvia and Galvus alone or with metformin on pregnant female mice and their embryos. World Applied Sciences Journal. 2013;25:1690–1698. doi: 10.5829/idosi.wasj.2013.25.12.76142
  48. Esteghamati A, Eskandari D, Mirmiranpour H, et al. Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: a randomized clinical trial. Clin Nutr. 2013;32(2):179–185. doi: 10.1016/j.clnu.2012.08.006
  49. Dogan Turacli I, Candar T, Yuksel EB, et al. Potential effects of metformin in DNA BER system based on oxidative status in type 2 diabetes. Biochimie. 2018;154:62–68. doi: 10.1016/j.biochi.2018.08.002
  50. Safe S, Nair V, Karki K. Metformin-induced anticancer activities: recent insights. Biol Chem. 2018;399(4):321–335. doi: 10.1515/hsz-2017-0271
  51. Anisimov VN. Do metformin a real anticarcinogen? A critical reappraisal of experimental data. Ann Transl Med. 2014;2(6):60. doi: 10.3978/j.issn.2305-5839.2014.06.02
  52. Noto H, Goto A, Tsujimoto T, Noda M. Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis. PLoS One. 2012;7(3): e33411. doi: 10.1371/journal.pone.0033411
  53. Zaidi S, Gandhi J, Joshi G, et al. The anticancer potential of metformin on prostate cancer. Prostate Cancer Prostatic Dis. 2019;22(3):351–361. doi: 10.1038/s41391-018-0085-2
  54. Tang GH, Satkunam M, Pond GR, et al. Association of Metformin with Breast Cancer Incidence and Mortality in Patients with Type II Diabetes: A GRADE-Assessed Systematic Review and Meta-analysis. Cancer Epidemiol Biomarkers Prev. 2018;27(6):627–635. doi: 10.1158/1055-9965.EPI-17-0936
  55. Yao L, Liu M, Huang Y, et al. Metformin Use and Lung Cancer Risk in Diabetic Patients: A Systematic Review and Meta-Analysis. Dis Markers. 2019;2019:6230162. doi: 10.1155/2019/6230162
  56. Heckman-Stoddard BM, DeCensi A, Sahasrabuddhe VV, Ford LG. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia. 2017;60(9):1639–1647. doi: 10.1007/s00125-017-4372-6
  57. Podhorecka M, Ibanez B, Dmoszyńska A. Metformin – its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw (Online). 2017;71:170–175. doi: 10.5604/01.3001.0010.3801
  58. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–1585. doi: 10.1007/s00125-017-4342-z
  59. Tseng CH. Thyroid cancer risk is not increased in diabetic patients. PLoS One. 2012;7(12): e53096. doi: 10.1371/journal.pone.0053096
  60. de Sant’Anna JR, Franco CC, Mathias PC, de Castro-Prado MA. Assessment of in vivo and in vitro genotoxicity of glibenclamide in eukaryotic cells. PLoS One. 2015;10(3): e0120675. doi: 10.1371/journal.pone.0120675
  61. Sarkar A, Tiwari A, Bhasin PS, Mitra M. Pharmacological and Pharmaceutical Profile of Gliclazide: A Review. J Appl Pharm Sci. 2011;1(9):11–19.
  62. Pouri M, Shaghaghi Z, Ghasemi A, Hosseinimehr SJ. Radioprotective Effect of Gliclazide as an Anti-Hyperglycemic Agent Against Genotoxicity Induced by Ionizing Radiation on Human Lymphocytes. Cardiovasc Hematol Agents Med Chem. 2019;17(1):40–46. doi: 10.2174/1871525717666190524092918
  63. Rabbani SI, Devi K, Khanam S. Inhibitory effect of glimepiride on nicotinamide-streptozotocin induced nuclear damages and sperm abnormality in diabetic Wistar rats. Indian J Exp Biol. 2009;47(10):804–810.
  64. Brambilla G, Martelli A. Update on genotoxicity and carcinogenicity testing of 472 marketed pharmaceuticals. Mutat Res. 2009;681(2–3):209–229. doi: 10.1016/j.mrrev.2008.09.002
  65. Smith MT. Mechanisms of troglitazone hepatotoxicity. Chem Res Toxicol. 2003;16(6):679–687. doi: 10.1021/tx034033e
  66. Nathan DM. Rosiglitazone and cardiotoxicity — weighing the evidence. N Engl J Med. 2007;357(1):64–66. doi: 10.1056/NEJMe078117
  67. Amein KA, Hamdy MM, Abd El-Emam RA, Osman FH. The effect of pioglitagone on genomic instability in induced diabetic rats. Research Journal of Applied Biotechnology. 2016; Special volume for the first International Conference of Genetic Engineering and Biotechnology:68–80. doi: 10.21608/rjab.2016.59636
  68. Morais JF, Sant’Anna JR, Pereira TS, et al. Genotoxic investigation of a thiazolidinedione PPARγ agonist using the in vitro micronucleus test and the in vivo homozygotization assay. Mutagenesis. 2016;31(4):417–424. doi: 10.1093/mutage/gew003
  69. Drab SR. Glucagon-Like Peptide-1 Receptor Agonists for Type 2 Diabetes: A Clinical Update of Safety and Efficacy. Curr Diabetes Rev. 2016;12(4):403–413. doi: 10.2174/1573399812666151223093841
  70. Guo X, Yang Q, Dong J, et al. Tumour Risk with Once-Weekly Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes Mellitus Patients: A Systematic Review. Clin Drug Investig. 2016;36(6):433–441. doi: 10.1007/s40261-016-0389-8
  71. Alves C, Batel-Marques F, Macedo AF. A meta-analysis of serious adverse events reported with exenatide and liraglutide: acute pancreatitis and cancer. Diabetes Res Clin Pract. 2012;98(2):271–284. doi: 10.1016/j.diabres.2012.09.008
  72. Azqueta A, Slyskova J, Langie SA, et al. Comet assay to measure DNA repair: approach and applications. Front Genet. 2014;5:288. doi: 10.3389/fgene.2014.00288
  73. Byetta Approval Scientific discussion [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwiK1frvgcPpAhVBAhAIHeXBDMkQFjABegQIAxAB&url=https%3A%2F%2Fwww.ema.europa.eu%2Fdocuments%2Fscientific-discussion%2Fbyetta-epar-scientific-discussion_en.pdf&usg=AOvVaw2BukkG_ld6RLWhosmSMDe-
  74. Assessment report for Victoza [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwji-86flqzrAhUBAxAIHWEwCaYQFjAAegQIBBAB&url=https%3A%2F%2Fwww.ema.europa.eu%2Fen%2Fema-redirect%3Fredirect_type%3Djsp%26webContentId%3DWC500050016&usg=AOvVaw3d6IbqsAoquGGnt9M_yV4_
  75. Assessment report Lyxumia [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwitsaygl6zrAhWjxIsKHdq-DI8QFjAAegQIBBAB&url=https%3A%2F%2Fwww.ema.europa.eu%2Fdocuments%2Fassessment-report%2Flyxumia-epar-public-assessment-report_en.pdf&usg=AOvVaw35wDuXxjyiD-0fL2paBAZv
  76. Assessment report Ozempic [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjImuuUmKzrAhVp-yoKHTU9Bg4QFjAKegQIARAB&url=https%3A%2F%2Fwww.ema.europa.eu%2Fdocuments%2Fassessment-report%2Fozempic-epar-public-assessment-report_en.pdf&usg=AOvVaw1zFwSfvLP0ycmHePzsnI2u
  77. Börçek Kasurka C, Elbistan M, Atmaca A, Atlı Şekeroğlu Z. In vitro cytogenetic assessment and comparison of vildagliptin and sitagliptin. Cytotechnology. 2019;71(6):1063–1077. doi: 10.1007/s10616-019-00345-y
  78. Annex I. Onglyza 2.5 and 5 mg film-coated tablets. Summary of product characteristics [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi0iLvBgoPzAhWPnYsKHb80CV4QFnoECAIQAQ&url=https%3A%2F%2Fwww.ema.europa.eu%2Fen%2Fdocuments%2Fproduct-information%2Fonglyza-epar-product-information_en.pdf&usg=AOvVaw1JdORt5TzuaemMnLSTnSOP
  79. Bristol-Myers Squibb Company. ONGLYZA™ (saxagliptin) tablets. US prescribing information. 2011.
  80. Annex I. Vipidia 6.25, 12.5 and 25 mg film-coated tablets. Summary of product characteristics [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjk377SgoPzAhXrsIsKHWpWCK8QFnoECAIQAQ&url=https%3A%2F%2Fwww.ema.europa.eu%2Fen%2Fdocuments%2Fproduct-information%2Fvipidia-epar-product-information_en.pdf&usg=AOvVaw2lKgOuaut8a473M-MAQeL8
  81. Çadirci K, Türkez H, Özdemir Ö. The in vitro cytotoxicity, genotoxicity and oxidative damage potential of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, on cultured human mononuclear blood cells. Acta Endocrinol (Buchar). 2019;5(1):9–15. doi: 10.4183/aeb.2019.9
  82. Oz Gul O, Cinkilic N, Gul CB, et al. Comparative genotoxic and cytotoxic effects of the oral antidiabetic drugs sitagliptin, rosiglitazone, and pioglitazone in patients with type-2 diabetes: a cross-sectional, observational pilot study. Mutat Res. 2013;757(1):31–35. doi: 10.1016/j.mrgentox.2013.04.024
  83. Reilly TP, Graziano MJ, Janovitz EB, et al. Carcinogenicity risk assessment supports the chronic safety of dapagliflozin, an inhibitor of sodium-glucose co-transporter 2, in the treatment of type 2 diabetes mellitus. Diabetes Ther. 2014;5(1):73–96. doi: 10.1007/s13300-014-0053-3
  84. Bogdanffy MS, Stachlewitz RF, van Tongeren S, et al. Nonclinical safety of the sodium-glucose cotransporter 2 inhibitor empagliflozin. Int J Toxicol. 2014;33(6):436–449. doi: 10.1177/1091581814551648
  85. Assessment report Canagliflozin [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiWj_bZpqzrAhVukIsKHcXYAngQFjABegQIARAB&url=https%3A%2F%2Fwww.ema.europa.eu%2Fdocuments%2Fassessment-report%2Finvokana-epar-public-assessment-report_en.pdf&usg=AOvVaw1VbOa--peFCGjDAZ8xdrcQ
  86. Smith JD, Huang Z, Escobar PA, et al. A Predominant Oxidative Renal Metabolite of Empagliflozin in Male Mice Is Cytotoxic in Mouse Renal Tubular Cells but not Genotoxic. Int J Toxicol. 2017;36(6):440–448. doi: 10.1177/1091581817735090
  87. Assessment report Steglatro [Internet]. Available from: https://www.ema.europa.eu/en/ema-redirect?redirect_type=document&lang=en&doc_id=WC500246920%20&doc_ext=pdf
  88. Annex I. Repaglinide Accord 0.5 mg tablets. Summary of product characteristics [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjCs5vCpKzrAhXv-yoKHRkoA30QFjAKegQIAxAB&url=https%3A%2F%2Fwww.ema.europa.eu%2Fen%2Fdocuments%2Fproduct-information%2Frepaglinide-accord-epar-product-information_en.pdf&usg=AOvVaw2KUEtCsjKl5piGAJuOkYMJ
  89. CHMP assessment report Bydureon [Internet]. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwig06WcgoPzAhXFlYsKHcq9CtUQFnoECBYQAQ&url=https%3A%2F%2Fwww.ema.europa.eu%2Fdocuments%2Fassessment-report%2Fbydureon-epar-public-assessment-report_en.pdf&usg=AOvVaw1OllVdjrn7ox25ZCCzJ_BZ
  90. European Medicines Agеncy. ICH S2 (R1) Genotoxicity testing and data interpretation for pharmaceuticals intended for human use — Step 5. 2013. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-s2-r1-genotoxicity-testing-data-interpretation-pharmaceuticals-intended-human-use-step_en.pdf
  91. Durnev AD, Seredenin SB. Co-mutagenesis as new vistas in genotoxicology. Byulleten’ eksperimental’noj biologii i mediciny. 2003;135(6):604–612. (In Russ.) doi: 10.1023/A:1025410612571
  92. Durnev AD, Daugel’-Dauge NO, Seredenin SB. Comutagen interaction of verapamil and ribavirin. Experimental and clinical pharmacology. 2006;69(1):56–59. (In Russ.)
  93. Durnev AD, Zhanataev AK, Voronina ES, et al. Modification of Chemical Mutagenesis. In: Genotoxicity: Evaluation, Testing and Prediction. Andor K., Molnar H., editors. NY: Nova Science Publishers, 2009. 157–187 p.
  94. Corrêa CR, Garcia JL. DNA Damage in Chronic Heart Failure: Consequences Beyond those in the Heart. Arq Bras Cardiol. 2020;114(2):243–244. doi: 10.36660/abc.20190884
  95. Cervelli T, Borghini A, Galli A, Andreassi MG. DNA damage and repair in atherosclerosis: current insights and future perspectives. Int J Mol Sci. 2012;13(12):16929–16944. doi: 10.3390/ijms131216929
  96. Mahmoudi M, Mercer J, Bennett M. DNA damage and repair in atherosclerosis. Cardiovasc Res. 2006;71(2):259–268. doi: 10.1016/j.cardiores.2006.03.002
  97. Schupp N, Stopper H, Heidland A. DNA Damage in Chronic Kidney Disease: Evaluation of Clinical Biomarkers. Oxid Med Cell Longev. 2016;2016:3592042. doi: 10.1155/2016/3592042
  98. Mishra M, Lillvis J, Seyoum B, Kowluru RA. Peripheral Blood Mitochondrial DNA Damage as a Potential Noninvasive Biomarker of Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2016;57(10):4035–4044. doi: 10.1167/iovs.16-19073
  99. Madsen-Bouterse SA, Mohammad G, Kanwar M, Kowluru RA. Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression. Antioxid Redox Signal. 2010;13(6):797–805. doi: 10.1089/ars.2009.2932
  100. Singh P, Jain A, Kaur G. Impact of hypoglycemia and diabetes on CNS: correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem. 2004;260(1–2):153–159. doi: 10.1023/b: mcbi.0000026067.08356.13
  101. Jackson AL, Loeb LA. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res. 2001;477(1–2):7–21. doi: 10.1016/s0027-5107(01)00091-4
  102. Dizdaroglu M. Oxidatively induced DNA damage and its repair in cancer. Mutat Res Rev Mutat Res. 2015;763:212–245. doi: 10.1016/j.mrrev.2014.11.002
  103. Verhagen H, Aruoma OI, van Delft JH, et al. The 10 basic requirements for a scientific paper reporting antioxidant, antimutagenic or anticarcinogenic potential of test substances in in vitro experiments and animal studies in vivo. Food Chem Toxicol. 2003;41(5):603–610. doi: 10.1016/s0278-6915(03)00025-5
  104. Durnev AD. Methodological aspects of studies of chemical mutagenesis modification. Byulleten’ eksperimental’noj biologii i mediciny. 2008;146(9):281–287. (In Russ.) doi: 10.1007/s10517-008-0273-5
  105. Durnev AD. Antimutagenesis and antimutagens. Human Physiology. 2018;44(3):116–137. (In Russ.) doi: 10.7868/S013116461803013

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 ООО "Эко-Вектор"


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies