Genotoxic markers in patients with diabetes mellitus (Literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper considers studies aimed at identifying markers of genotoxicity (chromosomal aberrations, micronuclei, and DNA damage assessed by the DNA comet assay) in patients with both gestational diabetes mellitus (GDM) and diabetes type 1 and 2 (T1DM and T2DM, respectively), as well as possible changes in the levels of these genotoxic markers under the influence of medicines and nutritions. Patients with T2DM are characterized by an increased level of genotoxicity markers. The results of genotoxicity markers in patients with T1DM and GDM studies are contradictory, however, they indicate the presence of an increased genotoxic load rather than its absence. The levels of genotoxic damage in diabetic patients may be reduced by physical exercises, diet, and/or hypoglycemic drugs. Metformin, Afobazole and Noopept are recommended for experimental and clinical studies as possible drug candidates that reduce the levels of genotoxic biomarkers in diabetic patients.

About the authors

Natalya V. Eremina

Zakusov Research Institute of Pharmacology

Author for correspondence.
Email: neremina@panacelalabs.com
ORCID iD: 0000-0002-7226-5505
SPIN-code: 5224-1968

Cand. Sci. (Biol.), senior research associate

Russian Federation, 8 Baltiyskaya str., Moscow, 125315

Aliy K. Zhanataev

Zakusov Research Institute of Pharmacology

Email: zhanataev@academpharm.ru
ORCID iD: 0000-0002-7673-8672
SPIN-code: 7070-0510
Scopus Author ID: 6506103462

Cand. Sci. (Biol.), main researcher

Russian Federation, 8 Baltiyskaya str., Moscow, 125315

Artem A. Lisitsyn

Zakusov Research Institute of Pharmacology

Email: nordikal@yandex.ru
ORCID iD: 0000-0002-9597-6051
SPIN-code: 7857-1860

researcher

Russian Federation, 8 Baltiyskaya str., Moscow, 125315

Andrey D. Durnev

Zakusov Research Institute of Pharmacology

Email: addurnev@mail.ru
ORCID iD: 0000-0003-0218-8580
SPIN-code: 8426-0380
Scopus Author ID: 7006060753

Dr. Sci. (Med.), Professor, Corresponding Member of RAS

Russian Federation, 8 Baltiyskaya str., Moscow, 125315

References

  1. IDF Diabetes Atlas 9th edition. Available at: https://diabetesatlas.org/en/sections/worldwide-toll-of-diabetes.html. Accessed: 19.05.2021.
  2. van Dieren S, Beulens JW, van der Schouw YT, et al. The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil. 2010;17 Suppl 1: S3–S8. doi: 10.1097/01.hjr.0000368191.86614.5a
  3. Dedov II, Shestakova MV, Maiorov A.Yu. Standards of specialized diabetes care. Edited by Dedov II, Shestakova MV, Mayorov AAYu. 9th edition. Diabet Mellitus. 2019;22(1S1):1–144 (In Russ.) doi: 10.14341/DM221S1
  4. Shestakova MV, Vikulova OK, Zheleznyakova AV, et al. Diabetes epidemiology in Russia: what has changed over the decade? Therapeutic Archive. 2019;91(10):4–13. (In Russ.) doi: 10.26442/00403660.2019.10.000364
  5. Demirbag R, Yilmaz R, Gur M, et al. DNA damage in metabolic syndrome and its association with antioxidative and oxidative measurements. Int J Clin Pract. 2006;60(10):1187–1193. doi: 10.1111/j.1742-1241.2006.01042.x
  6. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–820. doi: 10.1038/414813a
  7. Balabolkin MI. Rol’ glikirovaniya belkov, okislitel’nogo stressa v patogeneze sosudistykh oslozhnenii pri sakharnom diabete. Diabet Mellitus. 2002;4:8–16. (In Russ.)
  8. Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative stress: pathogenetic role in diabetes mellitus and its complications development, therapeutic approaches to correction. BEBiM. 2021;171(2):136–149. (In Russ.) doi: 10.47056/0365-9615-2021-171-2-136-149
  9. Bigagli E, Lodovici M. Circulating Oxidative Stress Biomarkers in Clinical Studies on Type 2 Diabetes and Its Complications. Oxid Med Cell Longev. 2019;2019:5953685. doi: 10.1155/2019/5953685
  10. Durnev AD, Seredenin SB. Mutageny: skrining i farmakologicheskaya profilaktika vozdeistvii. Moscow: Meditsina; 1998, 328 p. (In Russ.)
  11. Durnev AD, Zhanataev AK, Shreder OV, Seredenina VS. Genotoxic events and diseases. Molekulyarnaya Meditsina. 2013;3:3–19 (In Russ.)
  12. Witczak M, Ferenc T, Gulczyńska E, et al Elevated frequencies of micronuclei in pregnant women with type 1 diabetes mellitus and in their newborns. Mutat Res Genet Toxicol Environ Mutagen. 2014;763:12–17. doi: 10.1016/j.mrgentox.2014.02.002
  13. International Diabetes Federation. IDF Diabetes Atlas, 9th edn. Brussels, Belgium: International Diabetes Federation, 2019. Available at: https://diabetesatlas.org/en/
  14. Toljic M, Egic A, Munjas J, et al. Increased oxidative stress and cytokinesis-block micronucleus cytome assay parameters in pregnant women with gestational diabetes mellitus and gestational arterial hypertension. Reprod Toxicol. 2017;71:55–62. doi: 10.1016/j.reprotox.2017.04.002
  15. Witczak M, Wilczyński J, Gulczyńska E, et al. What is the impact of gestational diabetes mellitus on frequency of structural chromosome aberrations in pregnant women and their offspring? Mutat Res. 2017;818:27–30. doi: 10.1016/j.mrgentox.2017.04.003
  16. Gelaleti RB, Damasceno DC, Lima PH, et al. Oxidative DNA damage in diabetic and mild gestational hyperglycemic pregnant women. Diabetol Metab Syndr. 2015;7:1. doi: 10.1186/1758-5996-7-1
  17. Basu J, Datta C, Chowdhury S, et al. Gestational Diabetes Mellitus in a Tertiary Care Hospital of Kolkata, India: Prevalence, Pathogenesis and Potential Disease Biomarkers. Exp Clin Endocrinol Diabetes. 2020;128(4):216–223. doi: 10.1055/a-0794-6057
  18. Gelaleti RB, Damasceno DC, Santos DP, et al. Increased DNA Damage is Related to Maternal Blood Glucose Levels in the Offspring of Women With Diabetes and Mild Gestational Hyperglycemia. Reprod Sci. 2016;23(3):318–323. doi: 10.1177/1933719115602766.
  19. Durga KD, Adhisivam B, Vidya G, et al. Oxidative stress and DNA damage in newborns born to mothers with hyperglycemia — a prospective cohort study. J Matern Fetal Neonatal Med. 2018;31(18):2396–2401. doi: 10.1080/14767058.2017.1344630
  20. Zabrodina VV, Shreder ED, Shreder OV, et al. Impaired prenatal development and glycemic status in the offspring of rats with experimental streptozotocin-induced diabetes and their correction with afobazole. BEBM. 2014;158(7):20–24. (In Russ.)
  21. Mihaljevic O, Zivancevic-Simonovic S, Milosevic-Djordjevic O, et al. Apoptosis and genome instability in children with autoimmune diseases. Mutagenesis. 2018;33(5–6):351–357. doi: 10.1093/mutage/gey037
  22. Witczak M, Ferenc T, Gulczyńska E, et al. Elevated frequencies of micronuclei in pregnant women with type 1 diabetes mellitus and in their newborns. Mutat Res Genet Toxicol Environ Mutagen. 2014;763:12–17. doi: 10.1016/j.mrgentox.2014.02.002
  23. Cinkilic N, Kiyici S, Celikler S, et al. Evaluation of chromosome aberrations, sister chromatid exchange and micronuclei in patients with type-1 diabetes mellitus. Mutat Res. 2009;676(1–2):1–4. doi: 10.1016/j.mrgentox.2009.02.014
  24. Saraswathy R, Anand S, Kunnumpurath SK, et al. Chromosomal Aberrations and Exon 1 Mutation in the AKR1B1 Gene in Patients with Diabetic Neuropathy. Ochsner J. 2014;14(3):339–342.
  25. Salimi M, Broumand B, Mozdarani H. Association of elevated frequency of micronuclei in peripheral blood lymphocytes of type 2 diabetes patients with nephropathy complications. Mutagenesis. 2016;31(6):627–633. doi: 10.1093/mutage/gew029
  26. Prasad M, Bronson SC, Warrier T, et al. Evaluation of DNA damage in Type 2 diabetes mellitus patients with and without peripheral neuropathy: A study in South Indian population. J Nat Sci Biol Med. 2015;6(1):80–84. doi: 10.4103/0976-9668.149096
  27. Binici DN, Karaman A, Coşkun M, et al. Genomic damage in patients with type-2 diabetes mellitus. Genet Couns. 2013;24(2):149–156.
  28. Palazzo RP, Bagatini PB, Schefer PB, et al. Genomic instability in patients with type 2 diabetes mellitus on hemodialysis. Rev Bras Hematol Hemoter. 2012;34(1):31–35. doi: 10.5581/1516-8484.20120011
  29. Shettigar SK, Shailaja C, Kulkarni RK. Elevated micronuclei frequency in type 2 diabetes with high glycosylated hemoglobin. Diabetes Res Clin Pract. 2012;95(2):246–250. doi: 10.1016/j.diabres.2011.10.025
  30. Quintero Ojeda JE, Aguilar-Medina M, Olimón-Andalón V, et al. Increased Micronuclei Frequency in Oral and Lingual Epithelium of Treated Diabetes Mellitus Patients. Biomed Res Int. 2018;2018:4898153. doi: 10.1155/2018/4898153
  31. Il’inskikh NN, Kostromeeva MS, Il’inskikh EN. Monitoring tsitogeneticheskikh posledstvii u bol’nykh kleshchevym entsefalitom, imeyushchikh sakharnyi diabet 2 tipa, v zavisimosti ot polimorfizma genov glutation-S-transferaz. Diabet Mellitus. 2019;22(3):225–232. (In Russ.) doi: 10.14341/DM9715
  32. Grindel A, Brath H, Nersesyan A, et al. Association of Genomic Instability with HbA1c levels and Medication in Diabetic Patients. Sci Rep. 2017;7:41985. doi: 10.1038/srep41985
  33. Vormittag W. Structural chromosomal aberration rates and sister-chromatid exchange frequencies in females with type 2 (non-insulin-dependent) diabetes. Mutat Res. 1985;143(3):117–119. doi: 10.1016/s0165-7992(85)80020-8
  34. Shaw JF, Kansal PC, Gatti RA. Letter: Diabetes mellitus, chromosomal aberration, and malignancy. Lancet. 1976;2(7980):315. doi: 10.1016/s0140-6736(76)90769-8
  35. Lodovici M, Giovannelli L, Pitozzi V, et al. Oxidative DNA damage and plasma antioxidant capacity in type 2 diabetic patients with good and poor glycaemic control. Mutat Res. 2008;638(1–2):98–102. doi: 10.1016/j.mrfmmm.2007.09.002
  36. Dinçer Y, Akçay T, Alademir Z, Ilkova H. Assessment of DNA base oxidation and glutathione level in patients with type 2 diabetes. Mutat Res. 2002;505(1–2):75–81. Corrected and republished from: Mutat Res. 2003;525(1–2):129–30. doi: 10.1016/s0027-5107(02)00143-4
  37. Tatsch E, Bochi GV, Piva SJ, et al. Association between DNA strand breakage and oxidative, inflammatory and endothelial biomarkers in type 2 diabetes. Mutat Res. 2012;732(1–2):16–20. doi: 10.1016/j.mrfmmm.2012.01.004
  38. Arif M, Islam MR, Waise TM, et al. DNA damage and plasma antioxidant indices in Bangladeshi type 2 diabetic patients. Diabetes Metab. 2010;36(1):51–57. doi: 10.1016/j.diabet.2009.05.007
  39. Dinçer Y, Akçay T, Ilkova H, et al. DNA damage and antioxidant defense in peripheral leukocytes of patients with Type I diabetes mellitus. Mutat Res. 2003;527(1–2):49–55. doi: 10.1016/s0027-5107(03)00073-3.
  40. Franke SI, Müller LL, Santos MC, et al. Vitamin C intake reduces the cytotoxicity associated with hyperglycemia in prediabetes and type 2 diabetes. Biomed Res Int. 2013;2013:896536. doi: 10.1155/2013/896536
  41. Corbi SC, Bastos AS, Orrico SR, et al. Elevated micronucleus frequency in patients with type 2 diabetes, dyslipidemia and periodontitis. Mutagenesis. 2014;29(6):433–439. doi: 10.1093/mutage/geu043
  42. Astley S, Langrish-Smith A, Southon S, Sampson M. Vitamin E supplementation and oxidative damage to DNA and plasma LDL in type 1 diabetes. Diabetes Care. 1999;22(10):1626–1631. doi: 10.2337/diacare.22.10.1626
  43. Hannon-Fletcher MP, O’Kane MJ, Moles KW, et al. Levels of peripheral blood cell DNA damage in insulin dependent diabetes mellitus human subjects. Mutat Res. 2000;460(1):53–60. doi: 10.1016/s0921-8777(00)00013-6
  44. Watson WA, Petrie JC, Galloway DB, et al. In vivo cytogenetic activity of sulphonylurea drugs in man. Mutat Res. 1976;38(1):71–80. doi: 10.1016/0165-1161(76)90080-7
  45. Shaik NA, Shaik JP, Ali S, et al. Increased frequency of micronuclei in diabetes mellitus patients using pioglitazone and glimepiride in combination. Food Chem Toxicol. 2010;48(12):3432–3435. doi: 10.1016/j.fct.2010.09.016
  46. Harishankar MK, Logeshwaran S, Sujeevan S, et al. Genotoxicity evaluation of metformin and glimepiride by micronucleus assay in exfoliated urothelial cells of type 2 diabetes mellitus patients. Food Chem Toxicol. 2015;83:146–150. doi: 10.1016/j.fct.2015.06.013
  47. Oz Gul O, Cinkilic N, Gul CB, et al. Comparative genotoxic and cytotoxic effects of the oral antidiabetic drugs sitagliptin, rosiglitazone, and pioglitazone in patients with type-2 diabetes: a cross-sectional, observational pilot study. Mutat Res. 2013;757(1):31–35. doi: 10.1016/j.mrgentox.2013.04.024
  48. Müllner E, Brath H, Pleifer S, et al. Vegetables and PUFA-rich plant oil reduce DNA strand breaks in individuals with type 2 diabetes. Mol Nutr Food Res. 2013;57(2):328–338. doi: 10.1002/mnfr.201200343
  49. Müllner E, Brath H, Nersesyan A, et al. Nuclear anomalies in exfoliated buccal cells in healthy and diabetic individuals and the impact of a dietary intervention. Mutagenesis. 2014;29(1):1–6. doi: 10.1093/mutage/get056
  50. Choi SW, Yeung VT, Collins AR, Benzie IF. Redox-linked effects of green tea on DNA damage and repair, and influence of microsatellite polymorphism in HMOX-1: results of a human intervention trial. Mutagenesis. 2015;30(1):129–137. doi: 10.1093/mutage/geu022
  51. Sardaş S, Yilmaz M, Oztok U, et al. Assessment of DNA strand breakage by comet assay in diabetic patients and the role of antioxidant supplementation. Mutat Res. 2001;490(2):123–129. doi: 10.1016/s1383-5718(00)00157-1
  52. Zúñiga-González GM, Batista-González CM, Gómez-Meda BC, et al. Micronuclei in diabetes: folate supplementation diminishes micronuclei in diabetic patients but not in an animal model. Mutat Res. 2007;634(1–2):126–134. doi: 10.1016/j.mrgentox.2007.06.006
  53. Lazalde-Ramos BP, Zamora-Perez AL, Sosa-Macías M, et al. DNA and oxidative damages decrease after ingestion of folic acid in patients with type 2 diabetes. Arch Med Res. 2012;43(6):476–481. doi: 10.1016/j.arcmed.2012.08.013
  54. Gómez-Meda BC, Zamora-Perez AL, Muñoz-Magallanes T, et al. Nuclear abnormalities in buccal mucosa cells of patients with type I and II diabetes treated with folic acid. Mutat Res Genet Toxicol Environ Mutagen. 2016;797:1–8. doi: 10.1016/j.mrgentox.2015.12.003
  55. Manfredini V, Biancini GB, Vanzin CS, et al. Simvastatin treatment prevents oxidative damage to DNA in whole blood leukocytes of dyslipidemic type 2 diabetic patients. Cell Biochem Funct. 2010;28(5):360–366. doi: 10.1002/cbf.1654
  56. Xavier DJ, Takahashi P, Manoel-Caetano FS, et al. One-week intervention period led to improvements in glycemic control and reduction in DNA damage levels in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2014;105(3):356–363. doi: 10.1016/j.diabres.2014.06.004
  57. da Silva BS, Rovaris DL, Bonotto RM, et al. The influence on DNA damage of glycaemic parameters, oral antidiabetic drugs and polymorphisms of genes involved in the DNA repair system. Mutagenesis. 2013;28(5):525–530. doi: 10.1093/mutage/get029
  58. Pittaluga M, Sgadari A, Dimauro I, et al. Physical exercise and redox balance in type 2 diabetics: effects of moderate training on biomarkers of oxidative stress and DNA damage evaluated through comet assay. Oxid Med Cell Longev. 2015;2015:981242. doi: 10.1155/2015/981242
  59. Bankoglu EE, Arnold C, Hering I, et al. Decreased Chromosomal Damage in Lymphocytes of Obese Patients After Bariatric Surgery. Sci Rep. 2018;8(1):11195. doi: 10.1038/s41598-018-29581-6
  60. Ibarra-Costilla E, Cerda-Flores RM, Dávila-Rodríguez MI, et al. DNA damage evaluated by comet assay in Mexican patients with type 2 diabetes mellitus. Acta Diabetol. 2010;47 Suppl 1:111–116. doi: 10.1007/s00592-009-0149-9
  61. Anderson D, Yu TW, Wright J, Ioannides C. An examination of DNA strand breakage in the comet assay and antioxidant capacity in diabetic patients. Mutation Research. 199;398(1–2):151–161. doi: 10.1016/s0027-5107(97)00271-6
  62. OECD Test No. 489: In Vivo Mammalian Alkaline Comet Assay. Available at: https://www.oecd.org/env/test-no-489-in-vivo-mammalian-alkaline-comet-assay-9789264264885-en.htm
  63. Sirota NP, Zhanataev AK, Kuznetsova EA, et al. Some causes of inter-labolatory variation in the results of comet assay. Mutation Research. 2014;770:16–22. doi: 10.1016/j.mrgentox.2014.05.003
  64. Gajski G, Gerić M, Živković Semren T, et al. Application of the comet assay for the evaluation of DNA damage from frozen human whole blood samples: Implications for human biomonitoring. Toxicol Lett. 2020;319:58–65. doi: 10.1016/j.toxlet.2019.11.010
  65. Habib SL, Rojna M. Diabetes and risk of cancer. ISRN Oncol. 2013;2013:583786. doi: 10.1155/2013/583786
  66. Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33(7):1674–1685. doi: 10.2337/dc10-0666
  67. Simone S, Gorin Y, Velagapudi C, et al. Mechanism of oxidative DNA damage in diabetes: tuberin inactivation and downregulation of DNA repair enzyme 8-oxo-7,8-dihydro-2’-deoxyguanosine-DNA glycosylase. Diabetes. 2008;57(10):2626–2636. doi: 10.2337/db07-1579
  68. Lee SC, Chan JC. Evidence for DNA damage as a biological link between diabetes and cancer. Chin Med J (Engl). 2015;128(11): 1543–1548. doi: 10.4103/0366-6999.157693
  69. Eremina NV, Zhanataev AK, Durnev AD. Indutsiruemaya kletochnaya gibel’ kak vozmozhnyi put’ antimutagennogo vozdeistviya. BEBM. 2021. T. 171. № 1. P. 4–22. (In Russ.) doi: 10.47056/0365-9615-2021-171-1-4-22
  70. van Staa TP, Patel D, Gallagher AM, de Bruin ML. Glucose-lowering agents and the patterns of risk for cancer: a study with the General Practice Research Database and secondary care data. Diabetologia. 2012;55(3):654–665. doi: 10.1007/s00125-011-2390-3
  71. Attia SM, Helal GK, Alhaider AA. Assessment of genomic instability in normal and diabetic rats treated with metformin. Chem Biol Interact. 2009;180(2):296–304. doi: 10.1016/j.cbi.2009.03.001
  72. Rabbani SI, Devi K, Khanam S. Role of Pioglitazone with Metformin or Glimepiride on Oxidative Stress-induced Nuclear Damage and Reproductive Toxicity in Diabetic Rats. Malays J Med Sci. 2010;17(1):3–11.
  73. Aleisa AM, Al-Rejaie SS, Bakheet SA, et al. Effect of metformin on clastogenic and biochemical changes induced by adriamycin in Swiss albino mice. Mutat Res. 2007;634(1–2):93–100. doi: 10.1016/j.mrgentox.2007.06.005
  74. Najafi M, Cheki M, Rezapoor S, et al. Metformin: Prevention of genomic instability and cancer: A review. Mutat Res Genet Toxicol Environ Mutagen. 2018;827:1–8. doi: 10.1016/j.mrgentox.2018.01.007
  75. Durnev AD. Antimutagenesis and antimutagens. Human Physiology. 2018;44(3):116–137. (In Russ.) doi: 10.7868/S013116461803013X
  76. Sidneva ES, Katosova LD, Platonova VI, et al. Otsenka spontannogo i khimicheski indutsirovannogo mutageneza v kletkakh cheloveka v zavisimosti ot vitaminnoi obespechennosti. Bulletin of Experimental Biology and Medicine. 2005;139(5):199–203. (In Russ.)
  77. Durnev AD, Zhanataev AK, Shreder OV, Seredenin SB. Antimutagenic and antiteratogenic properties of afobazole. Eksp Klin Farmakol. 2009;72(1):46–51. (In Russ.)
  78. Zabrodina VV, Shreder OV, Shreder ED, Durnev AD. Effect of Afobazole and Betaine on Cognitive Disorders in the Offspring of Rats with Streptozotocin-Induced Diabetes and Their Relationship with DNA Damage. Bull Exp Biol Med. 2016;161(3):359–366. doi: 10.1007/s10517-016-3414-2
  79. Zabrodina VV, Shreder ED, Shreder OV, et al. Effect of Afobazole and Betaine on DNA Damage in Placental and Embryonic Tissues of Rats with Experimental Streptozocin Diabetes. Bull Exp Biol Med. 2015;159(6):757–760. doi: 10.1007/s10517-015-3068-5
  80. Ostrovskaya RU, Yagubova SS, Zhanataev AK, et al. Neuroprotective Dipeptide Noopept Prevents DNA Damage in Mice with Modeled Prediabetes. Bull Exp Biol Med. 2019;168(2):233–237. doi: 10.1007/s10517-019-04681-z.
  81. Supriya Simon A, Dinesh Roy D, Jayapal V, Vijayakumar T. Somatic DNA damages in cardiovascular autonomic neuropathy. Indian J Clin Biochem. 2011;26(1):50–56. doi: 10.1007/s12291-010-0087-x
  82. Martínez-Pérez LM, Cerda-Flores RM, Gallegos-Cabriales EC, et al. Frequency of micronuclei in Mexicans with type 2 diabetes mellitus. Prague Med Rep. 2007;108(3):248–255
  83. Gelaleti RB, Damasceno DC, Salvadori DM, et al. IRS-1 gene polymorphism and DNA damage in pregnant women with diabetes or mild gestational hyperglycemia. Diabetol Metab Syndr. 2015;7:30. doi: 10.1186/s13098-015-0026-3
  84. Wyatt N, Kelly C, Fontana V, et al. The responses of lymphocytes from Asian and Caucasian diabetic patients and non-diabetics to hydrogen peroxide and sodium nitrite in the Comet assay. Mutat Res. 2006;609(2):154–164. doi: 10.1016/j.mrgentox.2006.06.029
  85. Varvarovská J, Racek J, Stetina R, et al. Aspects of oxidative stress in children with type 1 diabetes mellitus. Biomed Pharmacother. 2004;58(10):539–545. doi: 10.1016/j.biopha.2004.09.011
  86. Collins AR, Raslová K, Somorovská M, et al. DNA damage in diabetes: correlation with a clinical marker. Free Radic Biol Med. 1998;25(3):373–377. doi: 10.1016/s0891-5849(98)00053-7
  87. Rao A, Thomas B, Prasad RB, et al. A comparative evaluation of the DNA damage in the serum of chronic periodontitis patients with and without diabetes mellitus type II. Indian J Dent Res. 2020;31(2):169–174. doi: 10.4103/ijdr.IJDR_503_17
  88. Raghav A, Ahmad J, Alam K. Preferential recognition of advanced glycation end products by serum antibodies and low-grade systemic inflammation in diabetes mellitus and its complications. Int J Biol Macromol. 2018;118(Pt B):1884–1891. doi: 10.1016/j.ijbiomac.2018.07.033
  89. Bukhari SA, Javed S, Ali M, et al. Serum haematological and biochemical indices of oxidative stress and their relationship with DNA damage and homocysteine in Pakistani type II diabetic patients. Pak J Pharm Sci. 2015;28(3):881–889.
  90. Merecz A, Markiewicz L, Sliwinska A, et al. Analysis of oxidative DNA damage and its repair in Polish patients with diabetes mellitus type 2: Role in pathogenesis of diabetic neuropathy. Adv Med Sci. 2015;60(2):220–230. doi: 10.1016/j.advms.2015.04.001
  91. Xavier DJ, Takahashi P, Evangelista AF, et al. Assessment of DNA damage and mRNA/miRNA transcriptional expression profiles in hyperglycemic versus non-hyperglycemic patients with type 2 diabetes mellitus. Mutat Res. 2015;776:98–110. doi: 10.1016/j.mrfmmm.2015.01.016
  92. Salem SI, El-Toukhy SE, El-Saeed GSM, El-Wassef M. Correlation of DNA damage in type 2 diabetes to glycemic control. The Egyptian Journal of Hospital Medicine. 2012;48:472–482. doi: 10.21608/EJHM.2012.16249
  93. Kasznicki J, Kosmalski M, Sliwinska A, et al. Evaluation of oxidative stress markers in pathogenesis of diabetic neuropathy. Mol Biol Rep. 2012;39(9):8669–8678. doi: 10.1007/s11033-012-1722-9
  94. Manfredini V, Biancini GB, Vanzin CS, et al. Simvastatin treatment prevents oxidative damage to DNA in whole blood leukocytes of dyslipidemic type 2 diabetic patients. Cell Biochem Funct. 2010;28(5):360–366. doi: 10.1002/cbf.1654
  95. Vasil’ev DA, Poroshina TE, Kovalenko IG, et al. The dual (joker) function of glucose and its association with aging and glucose intoleranc. Advances in Gerontology. 2008;21(2):204–211 (In Russ.)
  96. Bagatini PB, Palazzo RP, Rodrigues MT, et al. Induction and removal of DNA damage in blood leukocytes of patients with type 2 diabetes mellitus undergoing hemodialysis. Mutat Res. 2008;657(2):111–115. doi: 10.1016/j.mrgentox.2008.08.004
  97. Sliwinska A, Blasiak J, Kasznicki J, Drzewoski J. In vitro effect of gliclazide on DNA damage and repair in patients with type 2 diabetes mellitus (T2DM). Chem Biol Interact. 2008;173(3):159–165. doi: 10.1016/j.cbi.2008.03.017
  98. Song F, Jia W, Yao Y, et al. Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed Type 2 diabetes. Clin Sci (Lond). 2007;112(12): 599–606. doi: 10.1042/CS20060323
  99. Blasiak J, Arabski M, Krupa R, et al. DNA damage and repair in type 2 diabetes mellitus. Mutat Res. 2004;554(1–2):297–304. doi: 10.1016/j.mrfmmm.2004.05.011
  100. Pitozzi V, Giovannelli L, Bardini G, et al. Oxidative DNA damage in peripheral blood cells in type 2 diabetes mellitus: higher vulnerability of polymorphonuclear leukocytes. Mutat Res. 2003;529(1–2): 129–133. doi: 10.1016/s0027-5107(03)00114-3

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Medical significance of oxidative damage to nucleic acids, lipids, and proteins in hyperglycemia ([9], significantly modified)

Download (275KB)

Copyright (c) 2021 ООО "Эко-Вектор"


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies