Search for genes encoding potentially amyloidogenic proteins involved in regulation of nonsense -suppresion in Sacharom yces cerevisiae


Cite item

Full Text

Abstract

Previously, the deletion of SUP35N has been shown to create the genetic background for identification of the novel genes and epigenetic determinants controlling the nonsense-suppression. Here, using a genomic overexpression screen, we have found several genes encoding potentially amyloidogenic proteins, whose overexpression affects the suppressor phenotype in the strain producing the chimeric protein Aβ-Sup35MC on the background of the deletion of SUP35 gene encoding releasing factor eRF 3. It has been demonstrated the NAB2, NAB3 and VTS1 genes participate in the regulation of nonsense-suppression in S. cerevisiae.

Keywords

About the authors

Anton A Nizhnikov

Saint-Petersburg State University., Saint-Petersburg, RF

Email: ant.nizhnikov@gmail.com 7-9, Universitetskaya nab., St.Petersburg, 199034, Russia

Zalina M Magomedova

Saint-Petersburg State University., Saint-Petersburg, RF

Email: zalina.mag@gmail.com 7-9, Universitetskaya nab., St.Petersburg, 199034, Russia

Alsu Faritovna Sayfitdinova

Санкт-Петербургский государственный университет, Санкт-Петербург, РФ

Email: alsu@bio.pu.ru

Sergey Georgievich Inge-Vechtomov

Санкт-Петербургский государственный университет, Санкт-Петербург, РФ

Email: ingevechtomov@gmail.com

Aleksey Petrovich Galkin

Санкт-Петербургский государственный университет, Санкт-Петербург, РФ

Email: apgalkin@mail.ru

References

  1. Захаров И. А., Кожин С. А., Кожина Т. Н., Фёдорова И. В., 1984. Сборник методик по генетике дрожжей- сахаромицетов // Л.: Наука., 143 с.
  2. Инге-Вечтомов С. Г., 1964. Реверсии к прототрофности у дрожжей, нуждающихся в аденине // Вестник ЛГУ. Сер. 2. Вып 9. С. 112-117.
  3. Рубель А. А., Сайфитдинова А. Ф., Лада А. Г. и др., 2008. Дрожжевой шаперон Hsp104 регулирует экспрессию генов на посттранскрипционном уровне // Мол. биол. Т. 42. № 1. С. 123-130.
  4. Alberti S., Halfmann R., King O. et al., 2009. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins // Cell. Vol. 137. P. 146-158.
  5. Aviv T., Lin Z., Lau S. et al., 2003. The RNA-binding SAM domain of Smaug defines a new family of posttranscriptional regulators // Nat. Struct. Biol. Vol. 10. P. 614-621.
  6. Brown J. C., Lindquist S., 2009. A heritable switch in carbon source utilization driven by an unusual yeast prion // Genes. Dev. Vol. 23. P. 2320-2332.
  7. Conrad N. K., Wilson S. M., Steinmetz E. J., 2000. A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II // Genetics. Vol. 154. P. 557-571.
  8. Derkatch I. L., Bradley M. E., Zhou P. et al., 1997. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae // Genetics. Vol. 147. P. 507-519.
  9. Dilcher M., Kohler B., von Mollard G. F., 2001. Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6 // J. Biol. Chem. Vol. 276. P. 34537-34544.
  10. Du Z., Park K. W., Yu H. et al., 2008. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae // Nat. Genet. Vol. 40. P. 460-465.
  11. Fasken M. B., Stewart M., Corbett A. H., 2008. Functional significance of the interaction between the mRNAbinding protein, Nab2, and the nuclear pore-associated protein, Mlp1, in mRNA export // J. Biol. Chem. Vol. 283. P. 27130-27143.
  12. Hanahan D., 1985. DNA Cloning: A Practical Approach // IRL Press, 109 p.
  13. Harrison P. M., Gerstein M., 2003. A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes // Genome Biology. Vol. 4. E. 40.
  14. Hosoda N., Kobayashi T., Uchida N. et al., 2003. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation // J. Biol. Chem. Vol. 278. P. 38287-38291.
  15. Ivanov M. S., Ratchenko E. A., Mironova L. N., 2010. The protein complex Ppz1p/Hal3p and nonsense suppression efficiency in the yeast Saccharomyces cerevisiae // Mol. Biol. (Mosk.) Vol. 44. P. 1018-1026.
  16. Kaiser C., Michaelis S., Mitchell A., 1994. Methods in yeast genetics // NY: Cold Spring Harbor Lab. Press, 364 p.
  17. Krogan N. J., Cagney G., Yu H. et al., 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae // Nature. Vol. 440. P. 637-643.
  18. Ong W., Ibrahim M., Town M., Johnson J., 1997. Functional differences among the six Saccharomyces cerevisiae tRNATrp genes // Yeast. Vol. 13. P. 1357-1362.
  19. Ono B., Yoshida R., Kamiya K., Sugimoto T., 2005. Suppression of termination mutations caused by defects of the NMD machinery in Saccharomyces cerevisiae // Genes Genet. Syst. Vol. 80. P. 311-316.
  20. Osherovich L. Z., Weissman J. S., 2001. Multiple Gln/ Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion // Cell. Vol. 106. P. 183- 194.
  21. Patel B. K., Gavin-Smyth J., Liebman S. W., 2009. The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion // Nat. Cell. Biol. Vol. 11. P. 344-349.
  22. Rendl L., Bieman M., Smibert C., 2008. S. cerevisiae Vts1p induces deadenylation-dependent transcript degradation and interacts with the Ccr4p-Pop2p-Not deadenylase complex // RNA. Vol. 14. P. 1328-1336.
  23. Roberts B. T., Wickner R. B., 2003. Heritable activity: a prion that propagates by covalent autoactivation // Genes. Dev. Vol. 17. P. 2083-2087.
  24. Rogoza T., Goginashvili A., Rodionova S. et al., 2010. Non-Mendelian determinant [ISP+] in yeast is a nuclear- residing prion form of the global transcriptional regulator Sfp1 // Proc. Natl. Acad. Sci. U. S. A. Vol. 107. P. 10573-10577.
  25. Saifitdinova A. F., Nizhnikov A. A., Lada A. G. et al., 2010. [NSI+]: a novel non-Mendelian suppressor determinant in Saccharomyces cerevisiae // Curr. Genet. Vol. 56. P. 467-478.
  26. Sambrook J., Fritsch E. F., Maniatis T., 1989. Molecular cloning. A laboratory manual // N. Y.: Cold Spring Harbor Lab. Press., 1626 p.
  27. Serio T. R., Cashikar A. G., Kowal A. et al., 2000. Nucleated conformational conversion and the replication of conformational information by a prion determinant // Science. Vol. 289. P. 1317-1321.
  28. Sherman F., Fink G. R., Hancks J. B., 1986. Methods in yeast genetics // N. Y.: Cold Spring Harbor Lab. Press., 367 p.
  29. Urakov V. N., Valouev I. A., Kochneva-Pervukhova N. V. et al., 2006. N-terminal region of Saccharomyces cerevisiae eRF3 is essential for the functioning of the eRF1/eRF3 complex beyond translation termination // BMC. Mol. Biol. Vol. 7. E. 34.
  30. Van Dyke N., Pickering Brian F., Van Dyke M. W., 2009. Stm1p alters the ribosome association of eukaryotic elongation factor 3 and affects translation elongation // Nucl. Acids Res. Vol. 37. P. 6116-6125.
  31. Weiss W. A., Edelman I., Culbertson M. R., Friedberg E. C., 1987. Physiological levels of normal tRNA(CAGGln) can effect partial suppression of amber mutations in the yeast Saccharomyces cerevisiae // Proc. Natl. Acad. Sci. USA. Vol. 84. P. 8031-8034.
  32. Wickner R. B., 1994. [URE3] as an altered Ure2 protein: evidence for a prion analog in Saccharomyces cerevisiae // Science. Vol. 264. P. 566-569. ` экологическая генетика том IX № 4 2011 ISSN 1811-0932 86 Механизм ы модифика ционо й изменчивости
  33. Yang W., Yang H., Tien P., 2006. In vitro self-propagation of recombinant PrPSc-like conformation generated in the yeast cytoplasm // FEBS Lett. Vol. 580. P. 4231- 4235.
  34. Zhouravleva G., Frolova L., Le Goff X. et al., 1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3 // EMBO J. Vol. 14. P. 4065-4072.

Copyright (c) 2011 Nizhnikov A.A., Magomedova Z.M., Sayfitdinova A.F., Inge-Vechtomov S.G., Galkin A.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies