The analysis of association of the minisatellite UPS29 with Parkinson's disease


Cite item

Full Text

Abstract

The aim of this work was to identify new genetic markers associated with different forms of Parkinson's disease. A frequency of occurrence of different allele variants of minisatellite UPS29 localized in intron of centaurin p5 gene (CENTB5) was evaluated for patients with this pathology. The increase of frequency of UPS29 short alleles was observed for Parkinson's disease patients. This value depended on patient sex and age of pathology debut. Statistically significant difference with control was found only for females with early (30-50 years old) and late (> 60 years old) onset of Parkinson's disease. We suppose that UPS29 might be used as new genetic markers forearly (presymptomatic) diagnostics of some forms of Parkinson's disease.

Keywords

About the authors

Irina O Suchkova

Institute of Experimental Medicine, St. Petersburg, RF

Email: irsuchkova@mail.ru

Daria M Shubina

Institute of Experimental Medicine, St. Petersburg, RF

Email: iem@iem.spb.ru

Andrey F Yakimovsky

I. P. Pavlov First State Medical University, Saint-Petersburg, RF

Email: jakim@spmu.rssi.ru

Elena V Borisova

Institute of Experimental Medicine, St. Petersburg, RF

Email: doc_Lena@mail.ru

Nadezhda G Eliseeva

Institute of Experimental Medicine, St. Petersburg, RF

Email: iem@iem.spb.ru

Ludmila K Sasina

Institute of Experimental Medicine, St. Petersburg, RF

Email: sassina2001@hotmail.com

Tatyana V Baranova

Institute of Experimental Medicine, St. Petersburg, RF

Email: iem@iem.spb.ru

Vladislav S Baranov

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology , Saint-Petersburg, RF

Email: baranov@vb2475.spb.edu

Eugene L Patkin

Institute of Experimental Medicine, St. Petersburg, RF

Email: elp44@mail.ru

References

  1. Аксенова М. Г., Голимбет В. Е., Алфимова М. В., Носиков В. В. 2000. Аллельный полиморфизм гена переносчика дофамина в группах больных эндогенными психозами. Связь с патологическими синдромами//Молекулярная биология. Т. 34. С. 696-700.
  2. Воронин Д. А., Киселева Е. В., 2007. Функциональная роль белков, содержащих анкириновые повторы//Цитология. Т. 49. С. 989-999.
  3. Ворсанова С. Г., Юров Ю. Б., Чернышев В. И. 2006. Медицинская цитогенетика (учебное пособие). -Москва: ИД Медпрактика-М, 300 с.
  4. Ещенко И. Д., 2004. Биохимия психических и нервных болезней. -СПб.: Изд-во СПб ун-та, 200 с.
  5. Загоровская Т. Б., Иллариошкин С. Н., Сломинский П. А. и др., 2004. Клинико-генетический анализ ювенильного паркинсонизма в России//Журнал неврологии и психиатрии. Т. 5. № 8. С. 66-72.
  6. Зайнулина А. Г., Юрьев Е. Б., Бикбулатова С. Р., Хуснутдинова Э. К., 2003. Ассоциация полиморфных маркеров hSERT и SLC6A4 гена переносчика серотонина с шизофренией у больных разной этнической принадлежности//Молекулярная биология. Т.37. С.601-606.
  7. Иллариошкин С. И., Иванова-Смоленская И. А., Маркова Е. Д., 2002. ДНК-диагностика и медико-генетическое консультирование в неврологии. -Москва: Медицинское информационное агентство, 591 с.
  8. Иллариошкин С. И., Иванова-Смоленская И. А., Маркова Е.Д. и др., 2004.Молекулярно-генетический анализ наследственных нейродегенеративных заболеваний//Генетика. Т.40. С.816-826.
  9. Паткин Е. Л., Гайцхоки В. С., 2000. Сателлитные ДНК и болезни -возможные механизмы. Нестабильность минисателлитов//Генетика. Т.36. С. 1189-1194.
  10. Пчелина С. И., Якимовский А. Ф., Шварц Е. И., 2003. Наследственные основы болезни Паркинсона//Медицинская генетика. Т. 2. С. 411 -425.
  11. Сучкова И. О., Шубина Д. М., Сасина Л. К. и др., 2007. Молекулярно-генетическая характеристика негипервариабельного ГЦ-богатого минисателлита человека UPS29 гена CENTB5//Экологическая генетика. Т.5. №3. С.35-45.
  12. Шадрина М. И., Сломинский П. А., 2006. Молекулярная генетика болезни Паркинсона//Генетика. Т. 42. С. 1045-1059.
  13. Abou-Sleiman P. M., Muqit M. M., McDonald N. Q. et al., 2006. A heterozygous effect for PINK1 mutations in Parkinson's disease?//Ann. Neurol. Vol.60. P.414-419.
  14. Ahn J. Y., Ye K., 2005. PIKE GTPase signaling and function//Int. J. Biol. Sci. Vol. 1. P.44-50.
  15. Bernards A., 2003. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila//Biochimica et Biophysica Acta. Vol. 160. P. 347-382.
  16. Cozier G. E., Carlton J., Bouyoucef D., Cullen P. J., 2004. Membrane targeting by pleckstrin homology domains//Curr. ToP.Microbiol. Immunol. Vol.282. P.49-88.
  17. Goudreau J. L., Maraganore D. M., Farrer M. J. et al., 2002. Case-control study of dopamine transporter-1, monoamine oxidase-B, and catechol-o-methyl transferase polymorphisms in Parkinson's disease//Mov. Disorder. Vol. 17. P. 1305-1311.
  18. Ide file:///8.Ide М., Yamada К., Toyota T. et al., 2005. Genetic association analyses of PHOX2B and ASCL1 in neuropsychiatric disorders: evidence for association of ASCL1 with Parkinson's disease // Hum. Genet. Vol. 117. P. 520-527.
  19. Kim J. W., Kim D-H., Kim S-H., Cha J-K., 2000. Association of the dopamine transporter gene with Parkinson's disease in Korean patients//J. Korean Med. Sci. Vol. 15. P. 449-451.
  20. Larson G. P., Ding S., Lafreniere R. G., Krontir T. G., 1999. Instability of the EPM1 minisatellite//Hum. Mol. Genet. Vol. 8. P. 1985-1988.
  21. Lau J., Ioannidis J. P., Schmid С. H., 1997. Quantitative synthesis in systematic reviews//Ann. Intern. Med. Vol. 127. P.820-826.
  22. Lin J. J., Chen С. H, Yueh К. С. et al., 2006. A CD 14 monocyte receptor polymorphism and genetic susceptibility to Parkinson's disease for females//Parkinsonism and Related Disorders. Vol. 12. P. 9-13.
  23. Moore D. J., West А. В., Dawson V. L., Dawson Т. M., 2005. Molecular pathophysiology of Parkinson's disease//Annu. Rev. Neurosci. Vol.28. P.57-87.
  24. Neve К. A., Seamans J. K, Trantham-Davidson H., 2004.Dopamine receptor signaling//J. Recept. Signal. Transduct. Res. Vol.24. P. 165-205.
  25. Oliveira S. A., Li Y-J., Noureddine M. A. et al., 2005.Identification of risk and age-at-onset genes on chromosome lp in Parkinson disease//Am. J. Hum. Genet. Vol. 77. P. 252-264.
  26. Pankratz N., Foroud Т., 2004. Genetics of Parkinson disease//J. Am. Society for Experimental NeuroTherapeutics. Vol. 1. P. 235-242.
  27. Pchelina S. N., Yakimovskii A. F., Emelyanov A. K. et ai, 2008. Screening for LRRK2 mutations in patients with Parkinson's disease in Russia: identification of a novel LRRK2 variant//Eur. J. Neurol. Vol. 15. P. 692-696.
  28. Petit A., Kawarai Т., Paitel E. et al., 2005. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations//J. Biol. Chem. Vol. 280. P. 34025-34032.
  29. Reiser G., Bernstein H. G., 2004. Altered expression of protein p42IP4/centaurin-alpha 1 in Alzheimer's disease brains and possible interaction of p42IP4 with nucleolin//Neuroreport. Vol. 15. P. 147-148.
  30. Rizzu P., Hinkie D. A., Zhukareva V. et al., 2004. DJ-1 colocalizes with tau inclusions: a link between parkinsonism and dementia//Ann. Neurol. Vol.55. P. 113-118.
  31. Rong R., Ahn J. Y., Huang H. et al., 2003. PI3 kinase enhancer-Homer complex couples mGluRI to PI3 kinase, preventing neuronal apoptosis//Nat. Neurosci. Vol.6. P. 1153-1161.
  32. Scherzer С. R., Eklund A. C., Morse L.J. et al., 2007. Molecular markers of early Parkinson's disease based on gene expression in blood//Proc. Natl. Acad. Sci. USA. Vol.104. P. 955-960.
  33. Soundararajan M., Yang X., Elkins J.M. et al., 2007. The centaurin γ-1 GTPase-like domain functions as an NTPase//Biochem. J. Vol. 401. P. 679-688.
  34. Tang В., Xiong H., Sun P. et al., 2006. Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease//Hum. Mol. Genet. Vol. 15. P. 1816-1825.
  35. Thacker E., Kearns В., Chapman С. et al., 2004. The arf6 GAP centaurin alpha-1 is a neuronal actin-binding protein which also functions via GAP-independent activity to regulate the actin cytoskeleton//Eur. J. Cell Biol. Vol.83. P. 541-554.
  36. Vaiente E. M., Bentivoglio A. R., Cassetta E. et al., 2001. DYT13, a novel primary torsion dystonia locus, maps to chromosome 1 p36.13-36.32 in an Italian family with cranial-cervical or upper limb onset//Ann. Neurol. Vol.49. P.362-366.
  37. Valente E. M., Saivi S., Iaiongo T. et al., 2004. PINK1 mutations are associated with sporadic early-onset parkinsonism//Ann. Neurol. Vol. 56. P. 336-341.
  38. Wassink Т. Н., Piven J., Vieiand V.J. et ai., 2005. Evaluation of the chromosome 2q37.3 gene CENTG2 as an autism susceptibility gene//Am. J. Med. Genet. В Neuropsychiatr. Genet. Vol. 136. P. 36-44.
  39. Weihofen A., Ostaszewski В., Minami Y., Selkoe D. J., 2008. Pinkl Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pinkl//Hum. Mol. Genet. Vol. 17. P.602-616.
  40. West А. В., Moore D. J., Choi С. et al., 2007. Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity//Hum. Mol. Genet. Vol. 16. P. 223-232.
  41. Wong A file:///2.WongA . H. C., Buckle С. E., Van Tol H. H. M., 2000. Polymorphisms in dopamine receptors: what do they tell us? // Eur. J. Pharmacology. Vol.410. P. 183-203.

Copyright (c) 2009 Suchkova I.O., Shubina D.M., Yakimovsky A.F., Borisova E.V., Eliseeva N.G., Sasina L.K., Baranova T.V., Baranov V.S., Patkin E.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies