Analysis of the expression of polyamine biosynthesis genes in nodules of the garden pea (Pisum sativum L.) and the effect of exogenous treatment with polyamines on their development

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Polyamines are acting as signaling molecules during adaptation to stressful environment and as regulators of plant development. In plants, polyamines are represented mainly by putrescine, spermidine and spermine. The concentration of polyamines in symbiotic nodules of some legumes is 5–10 times higher than in the other organs, which indicates their important role in the formation and functioning of symbiotic nodules.

MATERIALS AND METHODS: We analyzed the expression of genes encoding polyamine biosynthesis enzymes in symbiotic nodules, as well as the effect of exogenous polyamines on the nodule number and the average nodule weight in wild-type SGE plants and symbiotic pea mutants SGEFix-1 (sym40-1) and SGEFix-2 (sym33-3).

RESULTS: The comparable expression level of arginine decarboxylase gene (PsADC) was observed in all analyzed nodules, whereas the expression level of ornithine decarboxylase gene (PsODC), was highly increased in nodules of SGEFix-2 (sym33-3) mutant. Treatment of the root system with a 0.1 mM solution of polyamines mixture led to an increase in the average weight of the nodule in wild-type plants and in the SGEFix-2 (sym33-3) mutant plants.

CONCLUSIONS: It was shown that the main pathway of putrescine synthesis in wild-type pea symbiotic nodules is the arginine pathway, while the ornithine pathway is probably associated with activation of plant defense reactions. Polyamines acting, apparently, through ethylene, affect the functioning of the nodule meristem.

About the authors

Kira A. Ivanova

All Russia Research Institute for Agricultural Microbiology

Email: kivanova@arriam.ru
ORCID iD: 0000-0002-9119-065X
SPIN-code: 1104-7503

junior researcher

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Viktor E. Tsyganov

All Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: vetsyganov@arriam.ru
ORCID iD: 0000-0003-3105-8689
SPIN-code: 6532-1332
Scopus Author ID: 7006136325
ResearcherId: Q-5634-2016

Dr. Sci. (Biol.)

Russian Federation, 3 Podbelskogo chaussee, 196608, Pushkin, Saint Petersburg

References

  1. Tabor CW, Tabor H. Polyamines. Ann Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533
  2. Tiburcio AF, Altabella T, Bitrián M, et al. The roles of polyamines during the lifespan of plants: from development to stress. Planta. 2014;240(1):1–18. doi: 10.1007/s00425-014-2055-9
  3. Galston AW, Kaur-Sawhney R, Altabella T, et al. Plant polyamines in reproductive activity and response to abiotic stress. Bot Acta. 1997;110(3):197–207. doi: 10.1111/j.1438-8677.1997.tb00629.x
  4. Bouchereau A, Aziz A, Larher F, et al. Polyamines and environmental challenges: recent development. Plant Sci. 1999;140(2):103–125. doi: 10.1016/S0168-9452(98)00218-0
  5. Borrell A, Culianez-Macia FA, Altabella T, et al. Arginine decarboxylase is localized in chloroplasts. Plant Physiol. 1995;109(3):771–776. doi: 10.1104/pp.109.3.771
  6. Walden R, Cordeiro A, Tiburcio AF. Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol. 1997;113(4):1009–1013. doi: 10.1104/pp.113.4.1009
  7. Kakkar RK, Sawhney VK. Polyamine research in plants – a changing perspective. Physiol Plant. 2002;116(3):281–292. doi: 10.1034/j.1399-3054.2002.1160302.x
  8. Fuell C, Elliott KA, Hanfrey CC, et al. Polyamine biosynthetic diversity in plants and algae. Plant Physiol Biochem. 2010;48(7): 513–520. doi: 10.1016/j.plaphy.2010.02.008
  9. Bitrián M, Zarza X, Altabella T, et al. Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites. 2012;2(3):516–528. doi: 10.3390/metabo2030516
  10. Kakkar RK, Nagar PK, Ahuja PS, et al. Polyamines and plant morphogenesis. Biol Plant. 2000;43(1):1–11. doi: 10.1023/A:1026582308902
  11. Pandey S, Ranade SA, Nagar PK, et al. Role of polyamines and ethylene as modulators of plant senescence. J Bioscie. 2000;25(3):291–299. doi: 10.1007/BF02703938
  12. Alcázar R, Altabella T, Marco F, et al. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta. 2010;231(6):1237–1249. doi: 10.1007/s00425-010-1130-0
  13. Wimalasekera R, Tebartz F, Scherer GFE. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci. 2011;181(5):593–603. doi: 10.1016/j.plantsci.2011.04.002
  14. Tadolini B. Polyamine inhibition of lipoperoxidation. The influence of polyamines on iron oxidation in the presence of compounds mimicking phospholipid polar heads. Biochem J. 1988;249(1):33–36. doi: 10.1042/bj2490033
  15. Cona A, Rea G, Angelini R, et al. Functions of amine oxidases in plant development and defence. Trends Plant Sci. 2006;11(2):80–88. doi: 10.1016/j.tplants.2005.12.009
  16. Tavladoraki P, Cona A, Federico R, et al. Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids. 2012;42(2):411–426. doi: 10.1007/s00726-011-1012-1
  17. Yamasaki H, Cohen MF. NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends Plant Sci. 2006;11(11):522–524. doi: 10.1016/j.tplants.2006.09.009
  18. Liu C, Atanasov KE, Tiburcio AF, et al. The polyamine putrescine contributes to H2O2 and RbohD/F-dependent positive feedback loop in Arabidopsis PAMP-triggered immunity. Front Plant Sci. 2019:894. doi: 10.3389/fpls.2019.00894
  19. De Oliveira LF, Elbl P, Navarro BV, Al E. Elucidation of the polyamine biosynthesis pathway during Brazilian pine (Araucaria angustifolia) seed development. Tree Physiol. 2016;37:116–130. doi: 10.1093/treephys/tpw107
  20. De Oliveira LF, Navarro BV, Cerruti G, Al E. Polyamines and amino acid related metabolism: the roles of arginine and ornithine are associated with the embryogenic potential. Plant Cell Physiol. 2018;59:1084–1098. doi: 10.1093/pcp/pcy049
  21. Mustafavi SH, Badi HN, Sekara A, Al E. Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol Plant. 2018;40(6):1–9. doi: 10.1007/s11738-018-2671-2
  22. Agudelo-Romero P, Bortolloti C, Pais MS, Al E. Study of polyamines during grape ripening indicate an important role of polyamine catabolism. Plant Physiol Biochem. 2013;67:105–119. doi: 10.1016/j.plaphy.2013.02.024
  23. Pál M, Szalai G, Janda T. Speculation: polyamines are important in abiotic stress signaling. Plant Sci. 2015;237:16–23. doi: 10.1016/j.plantsci.2015.05.003
  24. Sequeramutiozabal MI, Erban A, Kopka J, Al E. Global metabolic profiling of Arabidopsis polyamine oxidase 4 (AtPAO4) loss-of-function mutants exhibiting delayed dark-induced senescence. Front Plant Sci. 2016;7:173. doi: 10.1016/j.plantsci.2015.05.003
  25. Kusano T, Berberich T, Tateda C, et al. Polyamines: essential factors for growth and survival. Planta. 2008;228(3):367–381. doi: 10.1007/s00425-008-0772-7.
  26. Handa AK, Mattoo AK. Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem. 2010;48(7):540–546. doi: 10.1016/j.plaphy.2010.02.009
  27. Chen D, Shao Q, Yin L, et al. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci. 2019;10(9):1945. doi: 10.3389/fpls.2018.01945
  28. Hidalgo-Castellanos J, Marín-Peña A, Jiménez-Jiménez S, et al. Polyamines oxidation is required in the symbiotic interaction Medicago truncatula – Sinorhizobium meliloti but does not participate in the regulation of polyamines level under salinity. Plant Growth Regul. 2019;88(3):297–307. doi: 10.1007/s10725-019-00508-z
  29. Fujihara S, Abe H, Minakawa Y, et al. Polyamines in nodules from various plant-microbe symbiotic associations. Plant Cell Physiol. 1994;35(8):1127–1134. doi: 10.1093/oxfordjournals.pcp.a078705
  30. Flemetakis E, Efrose RC, Desbrosses G, et al. Induction and spatial organization of polyamine biosynthesis during nodule development in Lotus japonicus. Mol Plant Microbe Interact. 2004;17(12):1283–1293. doi: 10.1094/mpmi.2004.17.12.1283
  31. Efrose RC, Flemetakis E, Sfichi L, et al. Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules. Planta. 2008;228(1):37–49. doi: 10.1007/s00425-008-0717-1
  32. Jiménez Bremont J, Marina M, Guerrero-González MdL, et al. Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front Plant Sci. 2014;5:95. doi: 10.3389/fpls.2014.00095
  33. Becerra-Rivera VA, Dunn MF. Polyamine biosynthesis and biological roles in rhizobia. FEMS Microbiol Lett. 2019;366(7): fnz084. doi: 10.1093/femsle/fnz084
  34. Tsyganov VE, Morzhina EV, Stefanov SY, et al. The pea (Pisum sativum L.) genes sym33 and sym40 control infection thread formation and root nodule function. Mol Gen Genet. 1998;259(5): 491–503. doi: 10.1007/s004380050840
  35. Kosterin OE, Rozov SM. Mapping of the new mutation blb and the problem of integrity of linkage group I. Pisum Genet. 1993;25:27–31.
  36. Tsyganov VE, Seliverstova E, Voroshilova V, et al. Double mutant analysis of sequential functioning of pea (Pisum sativum L.) genes Sym13, Sym33, and Sym40 during symbiotic nodule development. Russ J Genet Appl Res. 2011;1(5):343. doi: 10.1134/S2079059711050145
  37. Voroshilova VA, Boesten B, Tsyganov VE, et al. Effect of mutations in Pisum sativum L. genes blocking different stages of nodule development on the expression of late symbiotic genes in Rhizobium leguminosarum bv. viciae. Mol Plant Microbe Interact. 2001;14(4):471–476. doi: 10.1094/mpmi.2001.14.4.471
  38. Glenn AR, Poole PS, Hudman JF. Succinate uptake by free-living and bacteroid forms of Rhizobium leguminosarum. Microbiology. 1980;119(1):267–271. doi: 10.1099/00221287-119-1-267
  39. Tsyganova AV, Tsyganov VE, Borisov AY, et al. Comparative cytochemical analysis of hydrogen peroxide distribution in pea ineffective mutant SGEFix-1 (sym40) and initial line SGE. Ecological genetics. 2009;7(3):3–9. (In Russ.) doi: 10.17816/ecogen733-9
  40. Fåhraeus G. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microb. 1957;16(2):374–381. doi: 10.1099/00221287-16-2-374
  41. Ivanova KA, Tsyganova AV, Brewin NJ, et al. Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42. Protoplasma. 2015;252(6):1505–1517. doi: 10.1007/s00709-015-0780-y
  42. Pérez-Amador MA, Carbonell J, Granell A. Expression of arginine decarboxylase is induced during early fruit development and in young tissues of Pisum sativum (L.). Plant Mol Biol. 1995;28(6):997–1009. doi: 10.1007/BF00032662
  43. Tsyganova AV, Kitaeva AB, Tsyganov VE. Cell differentiation in nitrogen-fixing nodules hosting symbiosomes. Funct Plant Biol. 2018;45(2):47–57. doi: 10.1071/Fp16377
  44. Meijer M, Murray JAH. The role and regulation of D-type cyclins in the plant cell cycle. Plant Mol Biol. 2000;43(5):621–633. doi: 10.1023/A:1006482115915
  45. Minocha R, Majumdar R, Minocha SC. Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci. 2014;5:175. doi: 10.3389/fpls.2014.00175
  46. Groppa MD, Benavides MP. Polyamines and abiotic stress: recent advances. Amino Acids. 2008;34:35–45. doi: 10.1007/s00726-007-0501-8
  47. Durmu N, Kadioglu A. Spermine and putrescine enhance oxidative stress tolerance in maize leaves. Acta Physiol. Plant. 2005;27:515–522. doi: 10.1007/s11738-005-0057-8
  48. Jia Y, Guo S, Li J. Effects of exogenous putrescine on polyamines and antioxidant system in cucumber seedlings under root-zone hypoxia stress. Acta Bot Boreali Occidentalia Sinica. 2008;28:1654–1662.
  49. Wu J, Shu S, Li C, et al. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiol Biochem. 2018;128:152–162. doi: 10.1016/j.plaphy.2018.05.002
  50. Bors W, Langebartels C, Michel C, et al. Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry. 1989;28(6):1589–1595. doi: 10.1016/S0031-9422(00)97805-1
  51. Saha J, Brauer EK, Sengupta A, Al E. Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci. 2015;3:21. doi: 10.3389/fenvs.2015.00021
  52. Tsyganova AV, Seliverstova EV, Brewin NJ, et al. Bacterial release is accompanied by ectopic accumulation of cell wall material around the vacuole in nodules of Pisum sativum sym33–3 allele encoding transcription factor PsCYCLOPS/PsIPD3. Protoplasma. 2019;256(5):1449–1453. doi: 10.1007/s00709-019-01383-1
  53. Pennazio S, Roggero P. Exogenous polyamines stimulate ethylene synthesis by soybean leaf tissues. Ann Bot. 1990;65(1):45–50. doi: 10.1093/oxfordjournals.aob.a087907
  54. Chen SL, Chen CT, Kao CH. Polyamines promote the biosynthesis of ethylene in detached rice leaves. Plant Cell Physiol. 1991;32(6):813–819. doi: 10.1093/oxfordjournals.pcp.a078148
  55. Tsyganov VE, Batagov AO, Voroshilova VA, et al. Pea (Pisum sativum L.) gene Sym33 can play a role in ethylene dependent regulation of nodulation. In: Pedrosa FO, Hungria M, Yates G, Newton WE, editors. Nitrogen Fixation: From Molecules to Crop Productivity Current Plant Science and Biotechnology in Agriculture. 38. Dordrecht: Springer, 2002. 262 p. doi: 10.1007/0-306-47615-0_140
  56. Voroshilova VA, Demchenko KN, Brewin NJ, et al. Initiation of a legume nodule with an indeterminate meristem involves proliferating host cells that harbour infection threads. New Phytol. 2009;181(4):913–923. doi: 10.1111/j.1469-8137.2008.02723.x
  57. Serova TA, Tikhonovich IA, Tsyganov VE. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization. J Plant Physiol. 2017;212:29–44. doi: 10.1016/j.jplph.2017.01.012

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Pathway of biosynthesis of polyamines in plants. The stages and enzymes are described in the main text

Download (164KB)
3. Fig. 2. Level of relative expression of polyamine biosynthesis genes: a – PsADC gene encoding arginine decarboxylase; b – PsODC gene encoding ornithine decarboxylase; c – PsSPDS1 gene encoding spermidine synthase-1; d – PsSPDS2 gene encoding spermidine synthase-2; e – PsSAMDC gene encoding S-adenosylmethionine decarboxylase in two- and three-week old nodules of wild-type garden pea SGE and mutants SGEFix–-1 (sym40-1) and SGEFix–-2 (sym33-3).* – within the genotype when compared with two-week old nodules; ** – from the wild-type SGE line at week 2 after inoculation (2 WAI); *** – from the wild-type SGE line at week 3 after inoculation (3 WAI); р ≤ 0.05

Download (160KB)

Copyright (c) 2021 ООО "Эко-Вектор"


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies