Regulatory status of genome-editing plants: perspectives for Russian Federation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The high-quality regulatory support for the use of plant genome editing technology is an urgent scientific and practical task of modern agriculture. Currently, the status of plants obtained using genomic editing (GE) technologies is not defined in Russian legislation. The article describes the principles and mechanism of CRISPR/Cas9 technology, and discusses the biological safety of the GE-plants. Fundamentally different approaches to genetically modified (GM) and GE-plants in the world are analyzed. We discuss the problems and contradictions of extending the GM-plants legal regulation to GE-plants. In particular, the European Court of Justice decision that extended the European GM-plants legislation for GE-plants. It is proposed to determine the legal status of GE-plants in Russian legislation, taking into account existing international practices, and protect the interests of the government in the field of biological and food security.

About the authors

Nataliya V. Bogatyreva

Saratov State Law Academy

Author for correspondence.
Email: bog.junior@gmail.com
ORCID iD: 0000-0001-5778-5249
SPIN-code: 3782-7657

Assistant 

Russian Federation, 1 Volckaya str., Saratov, 410056

Alexander Yu. Sokolov

Saratov State Law Academy

Email: AYSockolov@mail.ru
SPIN-code: 4009-2210

Dr. Sci. (Law), Professor

Russian Federation, 1 Volckaya str., Saratov, 410056

Yelizaveta M. Moiseeva

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences

Email: em-moiseeva@mail.ru
SPIN-code: 9433-8382

PhD, Cand. Sci. (Med.), Researcher

Russian Federation, Saratov

Yury S. Gusev

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences

Email: gusev_yu@ibppm.ru
SPIN-code: 1776-5237

PhD, Cand. Sci. (Med.), Senior Researcher

Russian Federation, Saratov

Mikhail I. Chumakov

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences

Email: chumakovmi@gmail.com
SPIN-code: 7354-9680

Dr. Sci. (Biol.)

Russian Federation, Saratov

References

  1. Brookes G. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996–2012. GM Crops Food. 2014;5(4):321–332. doi: 10.4161/21645698.2014.958930
  2. Pocket K 16: Biotech Crop Highlights in 2018 [Internet]. International Service for the Acquisition of Agri-biotech Applications (ISAAA); c2020. Available from: http://www.isaaa.org/resources/publications/pocketk/16/default.asp. Accessed: May 18, 2020.
  3. Medvedieva M, Blume Y. Legal Regulation of Plant Genome Editing with the CRISPR/Cas9 Technology as an Example. Cytol Genet. 2018;52(3):204–212. doi: 10.3103/S0095452718030 106
  4. Judgment of the Court (Grand Chamber) of 25 July 2018. Case C-528/16. ECLI: EU: C:2018:583.
  5. Yakovleva IV, Vinogradova SV, Kamionskaya AM. State regulation of the biotechnology (GM) agricultural products: analysis of different approaches in the world. Ecological genetics. 2015;13(2): 21–35. (In Russ.) doi: 10.17816/ecogen13221-35
  6. Tagliabue G. The EU legislation on “GMOs” between nonsense and protectionism: An ongoing Schumpeterian chain of public choices. GM Crops Food. 2016;8(1):57–73. doi: 10.1080/21645698.2016.1270488
  7. Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Sci. 2007;315(5819):1709–1712. doi: 10.1126/science.1138140
  8. Wright AV, Nunez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. J Cell. 2016;164(1–2):29–44. doi: 10.1016/j.cell.2015.12.035
  9. Andersson M, Turesson H, Olsson N, et al. Genome editing in potato via CRISPR–Cas9 ribonucleoprotein delivery. Physiol Plant. 2018;164:378–384. doi: 10.1111/ppl.12731
  10. Liang Z, Chen K, Li T, et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun. 2017;8(14261):1–5. doi: 10.1038/ncomms14261
  11. Malnoy M, Viola R, Jung M-H, et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci. 2016;7:1904. doi: 10.3389/fpls.2016.01904
  12. Svitashev S, Schwartz C, Lenderts B, et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun. 2016;7(13274):1–7. doi: 10.1038/ncomms13274
  13. Woo JW, Kim J, Kwon SI, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol. 2015;33:1162–1164. doi: 10.1038/nbt.3389
  14. Bao A, Burritt DJ, Chen H, et al. The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol. 2019;39(3):321–336. doi: 10.1080/07388551.2018.1554621
  15. Ma X, Zhu Q, Chen Y, et al. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications. Mol Plant. 2016;9(7):961–974. doi: 10.1016/j.molp.2016.04.009
  16. Zhang Y, Malzahn A, Sretenovic S, et al. The emerging and uncultivated potential of CRISPR technology in plant science. Nat Plants. 2019;5(8):778–794. doi: 10.1038/s41477-019-0461-5
  17. Ahmad N, Rahman M, Mukhtar Z, et al. A critical look on CRISPR-based genome editing in plants. J Cell Physiol. 2019;235(2):666–682. doi: 10.1002/jcp.29052
  18. Sprink T, Eriksson D, Schiemann J, et al. Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep. 2016;35(7):1493–1506. doi: 10.1007/s00299-016-1990-2
  19. Coe EH. A line of maize with high haploid frequency. Am Nat. 1959;59:381–382. doi: 10.1086/282098
  20. Chase SS. Monoploid frequencies in a commercial double cross hybrid maize, and its component single cross hybrids and inbred lines. Genet. 1949;34(3):328–333.
  21. Gilles LM, Khaled A, Laffaire JB, et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J. 2017;36(6):707–717. doi: 10.15252/embj.201796603
  22. Kelliher T, Starr D, Richbourg L, et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nat. 2017;542(7639):105–109. doi: 10.1038/nature20827
  23. Liu C, Li X, Meng D, et al. A 4-bp Insertion at ZmPLA1 Encoding a Putative Phospholipase а Generates Haploid Induction in Maize. Mol Plant. 2017;10(3):520–522. doi: 10.1016/j.molp.2017.01.011
  24. Ramessar K, Capell T, Twyman R, et al. Trace and traceability – a call for regulatory harmony. Nat Biotechnol. 2008;26(9):975–978. doi: 10.1038/nbt0908-975
  25. McHughen A. A critical assessment of regulatory triggers for products of biotechnology: Product vs. process. GM Crops Food. 2016;7(3–4):125–158. doi: 10.1080/21645698.2016.1228516
  26. Ishii T, Araki M. A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops Food. 2016;8(1):44–56. doi: 10.1080/21645698.2016.1261787
  27. Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC. OJ L 106 17.4.2001, p. 1.
  28. Sokolov AY, Bogatyreva NV. On the possibility of using foreign experience in safety assessment of genetically modified organisms and derived products in Russian legislation. Bulletin of the Russian Law Academy. 2019;1:78–84. (In Russ.)
  29. Secretary Perdue Issues USDA Statement on Plant Breeding Innovation [Internet]. U.S. Department of Agriculture. Available from: https://www.usda.gov/media/press-releases/2018/03/28/secretary-perdue-issues-usda-statement-plant-breeding-innovation. Accessed: May 18, 2002.
  30. Custers R, Casacuberta J, Eriksson D, et al. Genetic Alterations That Do or Do Not Occur Naturally; Consequences for Genome Edited Organisms in the Context of Regulatory Oversight. Frons Bioeng Biotechnol. 2019;6. doi: 10.3389/fbioe.2018.00213
  31. Spranger TM. Legal Analysis of the applicability of Directive 2001/18/EC on genome editing technologies. Commissioned by the German Federal Agency for Nature Conservation. Bonn, Germany: Bundesamt für Naturschutz (BfN); 2015. 51 p.
  32. SAM. A scientific perspective on the regulatory status of products derived from gene editing and the implications for the GMO Directive. 2019. DOI: 102777/10874
  33. German National Academy of Sciences Leopoldina, the Union of the German Academies of Sciences and Humanities and the German Research Foundation. Towards a scientifically justified, differentiated regulation of genome edited plants in the EU. 2019. 87 p. (In German).
  34. European Academies’ Science Advisory Council. The regulation of genome-edited plants in the European Union. 2020.
  35. SAM. New Techniques in Agricultural Biotechnology. (Aprl 2017). doi: 10.2777/17902
  36. Tagliabue G, Ammann K. Some Basis for a Renewed Regulation of Agri-Food Biotechnology in the EU. J Agric Environ Ethics. 2018;31(1):39–53. doi: 10.1007/s10806-018-9708-9
  37. Davison J, Ammann K. New GMO regulations for old: Determining a new future for EU crop biotechnology. GM Crops Food. 2017;8(1):13–34. doi: 10.1080/21645698.2017.1289305
  38. Araki M, Ishii T. Towards social acceptance of plant breeding by genome editing. Trends Plant Sci. 2015;20(3):145–149. doi: 10.1016/j.tplants.2015.01.010
  39. Matveeva TV, Azarakhsh M. Genetically modified organisms authorized for cultivation and breeding in Russia. Ecological genetics. 2016;14(4):32–40. (In Russ.) doi: 10.17816/ecogen14432-40
  40. Krasovskii OA. Pravovye problemy gennoi inzhenerii [dissertation]. Moscow, 24 p. (In Russ.)
  41. Mohova IN. Market promotion of gene-editing technologies and products. In: Prodvizhenie na rynok genoredaktiruyushchikh tekhnologii i produktov. Mohov AA, Sushkova OV, eds. Moscow, RG-Press; 2019. P. 65–68. doi: 10.31085/9785998809545-2019-368
  42. Presnjakov MV. Konstitucionnaja koncepcija pravovoj opredelennosti. Sovremennoe pravo. 2010;1:17–25. (In Russ.).
  43. Bondar’ NS. Sudebnyj konstitucionalizm v Rossii v svete konstitucionnogo pravosudija. Moscow, Norma Publ.; 2011. (In Russ.)
  44. Bondar’ NS. Pravovaja opredelennost’ – universal’nyj princip konstitucionnogo normokontrolja (praktika Konstitucionnogo Suda RF). Konstitucionnoe i municipal’noe pravo. 2011;10:4–11. (In Russ.)
  45. Troitskiy SV. The principle of legal certainty as a defect rulemaking, identified by the constitutional court of the russian federation. Vestnik mezhdunarodnogo instituta jekonomiki i prava. 2017;2(27):55–62. (In Russ.)
  46. Fears R, ter Meulen V. How should the applications of genome editing be assessed and regulated? eLife. 2017;6. doi: 10.7554/eLife.26295
  47. Mikhaylova EV, Kuluev BR, Khaziakhmetov RM. Assessment of hybridization propensity between genetically modified oilseed rape and nontransgenic relatives. Ecological genetics. 2015;13(2): 100–117. (In Russ.) doi: 10.17816/ecogen132100- 117
  48. National Academies of Sciences, Engineering, and Medicine. Genetically Engineered Crops: Experiences and Prospects. Washington, DC: The National Academies Press; 2016. DOI: 10.17226/ 23395
  49. Ley № 9/2003 – Régimen jurídico de la utilización confinada, liberación voluntaria y comercialización de organismos modificados genéticamente. Boletín Oficial del Estado. 26 de abril 2003;(10);16214–16223 (in Spain).
  50. Gentechnikgesetz in der Fassung der Bekanntmachung vom 16. Dezember 1993 (BGBl. I S. 2066), das zuletzt durch Artikel 21 des Gesetzes vom 20. November 2019 (BGBl. I S. 1626) geändert worden ist (in German).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bogatyreva N.V., Sokolov A.Y., Moiseeva Y.M., Gusev Y.S., Chumakov M.I.


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies