Development of approaches for genome editing of pea plants using CRISPR/Cas9 prime-editing technique

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mitogen-activated protein kinases (MAPKs) play an important role as intracellular regulators of signal pathways in plants. Some MAPKs have been shown to be induced in the roots of legume plants during symbiosis with nitrogen-fixing rhizobial bacteria. One of such signal regulators, MAPK6, was shown to be involved in the development of symbiosis between Pisum sativum L. pea plants and rhizobia. Using genetic engineering approaches, we overexpressed the MAPK6 gene in transgenic roots, that resulted in an increase in the number of nodules and the biomass of pea plants. New approaches for genome editing of pea plants have been designed using the CRISPR/Cas9 prime-editing technique, when the MAPK6 gene was used as a target. We have analyzed the transgenic roots of pea transformants and observed the presence of the gene encoding Cas9 the pegRNA sequence in the genome of transformants. Therefore, the possibility of using genetic engineering methods to obtain plants with increased efficiency of symbiosis will be investigated in future experiments.

About the authors

Elizaveta S. Kantsurova

All-Russia Research Institute for Agricultural Microbiology

Email: rudaya.s.e@gmail.com
SPIN-code: 4752-1910

Junior Researcher, Signal Regulation Laboratory

Russian Federation, 3 Podbelskogo highway, Pushkin-8, Saint Petersburg, 196608

Nikolay V. Kozlov

All-Russia Research Institute for Agricultural Microbiology

Email: bionkbio@gmail.com
Russian Federation, 3 Podbelskogo highway, Pushkin-8, Saint Petersburg, 196608

Elena A. Dolgikh

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: dol2helen@yahoo.com
SPIN-code: 4453-2060

Dr. Sci. (Biology)

Russian Federation, 3 Podbelskogo highway, Pushkin-8, Saint Petersburg, 196608

References

  1. Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–5433. doi: 10.1128/jb.169.12.5429-5433.1987
  2. Feng Z, Zhang B, Ding W, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013;23(10):1229–1232. doi: 10.1038/cr.2013.114
  3. Shen B, Zhang W, Zhang J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. 2014;11(4):399–402. doi: 10.1038/nmeth.2857
  4. Wang Y, Cheng X, Shan Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol. 2014;32(9):947–951. doi: 10.1038/nbt.2969
  5. Wang L, Chen L, Li R, et al. Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem. 2017;65(39):8674–8682. doi: 10.1021/acs.jafc.7b02745
  6. Zhou J, Peng Z, Long J, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 2015;82(4):632–643. doi: 10.1111/tpj.12838
  7. Liu W, Zhu X, Lei M, et al. A detailed procedure for CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana. Sci Bull. 2015;60(15):1332–1347. doi: 10.1007/s11434-015-0848-2
  8. Mercx S, Tollet J, Magy B, et al. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 suspension cells. Front Plant Sci. 2016;7:40. doi: 10.3389/fpls.2016.00040
  9. Weiss T, Wang C, Kang X, et al. Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in Setaria viridis. Plant J. 2020;104(3):828–838. doi: 10.1111/tpj.14949
  10. An Y, Geng Y, Yao J, et al. Efficient genome editing in populus using CRISPR/Cas12a. Front Plant Sci. 2020;11:593938. doi: 10.3389/fpls.2020.593938
  11. Wang L, Wang L, Tan Q, et al. Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Front Plant Sci. 2016;7:1333. doi: 10.3389/fpls.2016.01333
  12. Wang L, Rubio MC, Xin X, et al. CRISPR/Cas9 knockout of leghemoglobin genes in Lotus japonicus uncovers their synergistic roles in symbiotic nitrogen fixation. New Phytol. 2019;224(2):818–832. doi: 10.1111/nph.16077
  13. Michno J-M, Wang X, Liu J, et al. CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food. 2015;6(4):243–252. doi: 10.1080/21645698.2015.1106063
  14. Feng C, Yuan J, Wang R, et al. Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics. 2016;43(1):37–43. doi: 10.1016/j.jgg.2015.10.002
  15. Lee K, Eggenberger AL, Banakar R, et al. CRISPR/Cas9-mediated targeted T-DNA integration in rice. Plant Mol Biol. 2019;99(4–5):317–328. doi: 10.1007/s11103-018-00819-1
  16. Alam MS, Kong J, Tao R, et al. CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants. 2022;11(9):1184. doi: 10.3390/plants11091184
  17. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 2015;15(1):16. doi: 10.1186/s12896-015-0131-2
  18. Makhotenko AV, Khromov AV, Snigir EA, et al. Functional analysis of coilin in virus resistance and stress tolerance of potato Solanum tuberosum using CRISPR-Cas9 editing. Biochem Biophys Mol Biol. 2019;484(1):88–91. doi: 10.1134/S1607672919010241
  19. Dinkins RD, Hancock J, Coe BL, et al. Isoflavone levels, nodulation and gene expression profiles of a CRISPR/Cas9 deletion mutant in the isoflavone synthase gene of red clover. Plant Cell Rep. 2021;40(3):517–528. doi: 10.1007/s00299-020-02647-4
  20. Gasparis S, Kala M, Przyborowski M, et al. A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.). Plant Methods. 2018;14(1):111. doi: 10.1186/s13007-018-0382-8
  21. Ren C, Liu X, Zhang Z, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep. 2016;6(1):32289. doi: 10.1038/srep32289
  22. Tanaka J, Minkenberg B, Poddar S, et al. Improvement of gene delivery and mutation efficiency in the CRISPR-Cas9 Wheat (Triticum aestivum L.) Genomics System via Biolistics. Genes (Basel). 2022;13(7):1180. doi: 10.3390/genes13071180
  23. Xie Y, Ul Haq SI, Jiang X, et al. Plant genome editing: CRISPR, base editing, prime editing, and beyond. Grassl Res. 2022;1(4): 234–243. doi: 10.1002/glr2.12034
  24. Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–424. doi: 10.1038/nature17946
  25. Mishra R, Joshi RK, Zhao K. Base editing in crops: current advances, limitations and future implications. Plant Biotechnol J. 2020;18(1):20–31. doi: 10.1111/pbi.13225
  26. Li C, Zong Y, Wang Y, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 2018;19(1):59. doi: 10.1186/s13059-018-1443-z
  27. Yan D, Ren B, Liu L, et al. High-efficiency and multiplex adenine base editing in plants using new TadA variants. Mol Plant. 2021;14(5):722–731. doi: 10.1016/j.molp.2021.02.007
  28. Zhang R, Liu J, Chai Z, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plants. 2019;5(5):480–485. doi: 10.1038/s41477-019-0405-0
  29. Li Y, Zhu Z, Wu H, et al. Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize. Crop J. 2020;8(3):449–456. doi: 10.1016/j.cj.2019.10.001
  30. Veillet F, Perrot L, Chauvin L, et al. Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int J Mol Sci. 2019;20(2):402. doi: 10.3390/ijms20020402
  31. Butt H, Rao GS, Sedeek K, et al. Engineering herbicide resistance via prime editing in rice. Plant Biotechnol J. 2020;18(12):2370–2372. doi: 10.1111/pbi.13399
  32. Tang X, Sretenovic S, Ren Q, et al. Plant prime editors enable precise gene editing in rice cells. Mol Plant. 2020;13(5):667–670. doi: 10.1016/j.molp.2020.03.010
  33. Li X, Zhou L, Gao B-Q, et al. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nat Commun. 2022;13(1):1669. doi: 10.1038/s41467-022-29339-9
  34. Zong Y, Liu Y, Xue C, et al. An engineered prime editor with enhanced editing efficiency in plants. Nat Biotechnol. 2022;40(9): 1394–1402. doi: 10.1038/s41587-022-01254-w
  35. Hassan M, Yuan G, Chen J-G, et al. Prime editing technology and its prospects for future applications in plant biology research. BioDesign Res. 2020;2020:9350905. doi: 10.34133/2020/9350905
  36. Lin Q, Zong Y, Xue C, et al. Prime genome editing in rice and wheat. Nat Biotechnol. 2020;38(5):582–585. doi: 10.1038/s41587-020-0455-x
  37. Wada N, Ueta R, Osakabe Y, Osakabe K. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol. 2020;20(1):234. doi: 10.1186/s12870-020-02385-5
  38. Yin J, Guan X, Zhang Z, et al. An MAP kinase interacts with LHK1 and regulates nodule organogenesis in Lotus japonicus. Sci China Life Sci. 2019;62(9):1203–1217. doi: 10.1007/s11427-018-9444-9
  39. Hrbáčková M, Luptovčiak I, Hlaváčková K, et al. Overexpression of alfalfa SIMK promotes root hair growth, nodule clustering and shoot biomass production. Plant Biotechnol J. 2021;19(4):767–784. doi: 10.1111/pbi.13503
  40. Bovin AD, Dolgikh AV, Dymo AM, et al. Genetically modified legume plants as a basis for studying the signal regulation of symbiosis with nodule bacteria. Horticulturae. 2024;10(1):9. doi: 10.3390/horticulturae10010009
  41. Bekešová S, Komis G, Krenek P, et al. Monitoring protein phosphorylation by acrylamide pendant Phos-TagTM in various plants. Front Plant Sci. 2015;6:339. doi: 10.3389/fpls.2015.00336
  42. Orosz L, Svab Z, Kondorosi A, Sik T. Genetic studies on rhizobiophage 16–3. Mol Gen Genet. 1973;125(4):341–350. doi: 10.1007/BF00276589
  43. Krall L, Wiedemann U, Unsin G, et al. Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. PNAS. 2002;99(17):11405–11410. doi: 10.1073/pnas.172390699
  44. van Brussel AA, Tak T, Wetselaar A, et al. Small leguminosae as test plants for nodulation of Rhizobium leguminosarum and other rhizobia and agrobacteria harbouring a leguminosarum sym-plasmid. Plant Sci Lett. 1982;27(3):317–325. doi: 10.1016/0304-4211(82)90134-1
  45. Kreplak J, Madoui M-A, Capal P, et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet. 2019;51(9):1411–1422. doi: 10.1038/s41588-019-0480-1
  46. Concordet J-P, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46(W1):W242–W245. doi: 10.1093/nar/gky354
  47. Bae S, Park J, Kim J-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30(10):1473–1475. doi: 10.1093/bioinformatics/btu048
  48. Decaestecker W, Buono RA, Pfeiffer ML, et al. CRISPR-Tsko: A technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis. Plant Cell. 2019;31(12):2868–2887. doi: 10.1105/tpc.19.00454
  49. Sambrook J, Russell DW. Molecular cloning: A Laboratory manual. 3rd Edition. United States: Cold Spring Harbor Laboratory Press, 2001. 435 p.
  50. Afonin AM, Leppyanen IV, Kulaeva OA, et al. A high coverage reference transcriptome assembly of pea (Pisum sativum L.) mycorrhizal roots. Vavilov Journal of Genetics and Breeding. 2020;24(4):331–339. doi: 10.18699/VJ20.625
  51. Alves-Carvalho S, Aubert G, Carrere S, et al. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J. 2015;84(1):1–19. doi: 10.1111/tpj.12967
  52. Schiessl K, Lilley JSL, Lee T, et al. NODULE INCEPTION recruits the lateral root developmental program for symbiotic nodule organogenesis in Medicago truncatula. Curr Biol. 2019;29(21):3657–3668.e5. doi: 10.1016/j.cub.2019.09.005
  53. Ichimura K, Shinozaki K, Mundy J, et al. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 2002;7(7):301–308. doi: 10.1016/S1360-1385(02)02302-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of MAPK6 gene structure and the target site TXY for CRISPR/Cas prime-editing: a, MAPK6 gene structure; b, MAPK6 protein and site for replacement TXY amino acid residues to DXD; c, location of pegRNA including gRNA, RNA scaffold and template for reverse transcriptase (RT template) as well as PAM site for Cas9

Download (352KB)
3. Fig. 2. Scheme illustrating the pGGK-A-G system for CRISPR/Cas9 genome editing. The pGG-C-D vector contains the sequences encoding Cas9 (H840A) nickase and reverse transcriptase of murine leukemia virus (codon-optimized for expression in plants). Replacement of gRNA with pegRNA was performed in the pGG-F-G vector. A modified sequence consists of the gRNA, RNA-scaffold and RT template with the replacements in the gene encoding MAPK6. tRNA — target RNA

Download (253KB)
4. Fig. 3. Scheme illustrating the modifications in the pGG-C-D vector (a) and pGG-F-G vector (b) applied in this study for CRISPR/Cas9 genome editing. tRNA — target RNA

Download (246KB)
5. Fig. 4. PCR analysis of pea transgenic roots from composite plants of cv. Frisson created using Agrobacterium rhizogenes. DNA was extracted from the roots of transformants (T). Plant transformed with construct with gene encoding bacterial β-glucuronidase (GUS) were used as a control. a, analysis revealed the presence of the Cas9 gene in the genome of transformants (T), but not in the GUS-control. The primers to promoter pPcUBI (F) and Cas9 gene (R) have been used; b, the presence of pegRNA sequence was shown in the genome of transformants, but not in the GUS-control. The primers to promoter pAtU6 (F) and gRNA-MK6 (R) have been used

Download (152KB)

Copyright (c) 2024 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies