M.E. Lobashev’s physiological theory of the mutation process and the formation of contemporary views on mutational changes in genetic material

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Changes in mutation rates can significantly impact population size and its genetic structure, leading to the emergence of new traits and species. At the same time, the destabilization of genetic material is the main cause of hereditary and oncological diseases and aging. M.E. Lobashev was the first to point out the connection between mutations and repair. He introduced the concept of a premutation state or primary lesion of genetic material and suggested that mutagenesis is a physiological process in which mutations occurs during the repair of damaged genetic material due to non-identical restoration of its structure. The theories of M.E. Lobashev laid the groundwork for understanding the causes and mechanisms of inherited changes in genetic material, which have been experimentally confirmed in studies of replication, repair, and recombination. It is now known that mutations arise through a multistep process over time, due to ambiguity of one of template processes — DNA synthesis. Recent research made it possible to establish the physical nature of primary lesions and mutations, to develop various methods for their identification, and estimate the impact of primary lesions and mutations in the phenotype formation.

About the authors

Anna S. Zhuk

Saint Petersburg State University; Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences

Email: ania.zhuk@gmail.com
ORCID iD: 0000-0001-8683-9533
SPIN-code: 2223-5306
Scopus Author ID: 54953157500
ResearcherId: N-5270-2015

Cand. Sci. (Biology), Assistant Professor

Russian Federation, Saint Petersburg; Saint Petersburg

Elena I. Stepchenkova

Saint Petersburg State University; Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences

Email: stepchenkova@gmail.com
ORCID iD: 0000-0002-5854-8701
SPIN-code: 9121-7483
Scopus Author ID: 8862552900
ResearcherId: F-9931-2014
https://www.researchgate.net/profile/Elena_Stepchenkova

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg

Sergey G. Inge-Vechtomov

Saint Petersburg State University; Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences

Author for correspondence.
Email: ingevechtomov@gmail.com
ORCID iD: 0000-0002-2832-6825
SPIN-code: 3743-7626
Scopus Author ID: 23473232500
ResearcherId: 23473232500
http://www.ras.ru/win/db/show_per.asp?P=.id-1684.ln-ru

Dr. Sci. (Biology), Professor, Academician of the Russian Academy of Sciences

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Inge-Vechtomov SG. Genetics with the basics of breeding. Saint Petersburg: N-L, 2010. (In Russ.)
  2. Garland EA. Hugo de Vries and the reception of the “mutation theory”. J Hist Biol. 1969;2(1):55–87. doi: 10.1007/BF00137268
  3. Nadson GA, Filippov GS. On the influence of X-rays on sexual process and mutant formation in lower fungi (Mucoraceae). Journal of Radiology and Nuclear Medicine. 1925;3(6):305–310. (In Russ.)
  4. Muller HJ. Artificial transmutation of the gene. Science. 1927;66(1699):84–87. doi: 10.1126/science.66.1699.84
  5. Muller HJ. Types of visible variations induced by x-rays in Drosophila. J Genet. 1930;22(3):299–334. doi: 10.1007/BF02984195
  6. Gager SC, Blakeslee AF. Cyromosome and gene mutations in Datura following exposure to radium rays. PNAS. 1927;13(2):75–82. doi: 10.1073/pnas.13.2.75
  7. Stadler LJ. Genetic effects of x-rays in maize. PNAS. 1928;14(1):69–75. doi: 10.1073/pnas.14.1.69
  8. Stadler LJ. Mutations in barley induced by x-rays and radium. Science. 1928;68(1756):186–187. doi: 10.1126/science.68.1756.186
  9. Timofeev-Resovsky NV. Selected works. Moscow: Nauka, 2009. 511 p. (In Russ.)
  10. Meissel MN. Effect of chloroform on yeast development. Journal of Microbiology. 1928;(6). (In Russ.)
  11. Abilev SK, Glazer VM. Mutagenesis with the basics of genotoxicology: textbook. Saint Petersburg: Nestor-Istoriya, 2015. 304 p. (In Russ.)
  12. Rapoport IA. Chemical mutagenesis. Theory and practice. Moscow: Znanie, 1966. 86 p. (In Russ.)
  13. Shkvarnikov PK, Navashin MS. On acceleration of mutation process in dormant seeds under the influence of elevated temperature. Biological Journal. 1935;4(1):25–38. (In Russ.)
  14. Navashin M, Shkvarnikov P. Process of mutation in resting seeds accelerated by increased temperature. Nature. 1933;132(3334): 482–483. doi: 10.1038/132482c0
  15. Kerkis YJ. Artificial production of mutations by temperature effects. Nature. 1933;7:67–72. (In Russ).
  16. Kerkis J. The effect of low temperature on the mutation frequency in D. melanogaster with consideration about the cause of mutation in nature. Drosophila Information Seriece. 1941;15:25.
  17. Kerkis YJ. Influence of temperature below 0˚ on mutation process and some considerations on the causes of spontaneous mutation process. Doklady Akademii Nauk SSSR. 1939;24(4):388–390. (In Russ.)
  18. Lobashev ME. Physiological (paranecrotic) hypothesis of the mutation process. Bulletin of Leningrad University. 1947;(8):10–29. (In Russ.)
  19. Inge-Vechtomov SG. Retrospective of genetics: a course of lectures. Saint Petersburg: N-L, 2015. 336 p. (In Russ.)
  20. Kerkis YJ. Physiological changes in the cell as a cause of the mutation process. Achievements of modern biology. 1940;12(1): 143–159. (In Russ.)
  21. Nasonov DN, Alexandrov VY. Reaction of living matter to external influences. Denaturation theory of damage and irritation. Moscow: AN SSSR, 1940. (In Russ.)
  22. Lobashev ME. On the nature of the action of external conditions on the dynamics of the mutation process [dissertation]. Leningrad, 1946. (In Russ).
  23. Lobashev ME. Physiological hypothesis of mutation process, in studies on genetics. Leningrad: LSU, 1976. P. 3–15. (In Russ.)
  24. Khromov-Borisov N. Physiological theory of mutation process a quarter of a century later. Scientific research on genetics. Leningrad: LSU, 1976. P. 16–32. (In Russ.)
  25. Inge-Vechtomov SG. The problem of variability. Phenomenology and mechanisms. Vavilov Journal of Genetics and Breeding. 2013;17(4/2):791–804.
  26. Inge-Vechtomov SG. From chromosome theory to the template principle. Russian Journal of Genetics. 2015;51(4):323–333. doi: 10.1134/S1022795415040079
  27. von Borstel RC. On the origin of spontaneous mutations. Jap J Genet. 1969;44(S1):102–105.
  28. Maki H. Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu Rev Genet. 2002;36:279–303. doi: 10.1146/annurev.genet.36.042602.094806
  29. Hoeijmakers JHJ. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366–374. doi: 10.1038/35077232
  30. Friedberg EC, Walker GC, Siede W, et al. DNA repair and mutagenesis. 2nd edit. Washington: ASM Press, 2006. doi: 10.1128/9781555816704
  31. Dexheimer TS. DNA repair pathways and mechanisms. In: Mathews LA, Cabarcas SM, Hurt EM, editors. DNA repair of cancer stem cells. Springer Netherlands; 2012. P. 19–32. doi: 10.1007/978-94-007-4590-2_2
  32. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362(6422):709–715. doi: 10.1038/362709a0
  33. Rao KS. Genomic damage and its repair in young and aging brain. Mol Neurobiol. 1993;7(1):23–48. doi: 10.1007/BF02780607
  34. Martin LJ. DNA damage and repair: relevance to mechanisms of neurodegeneration. J Neuropathol Exp Neurol. 2008;67(5):377–387. doi: 10.1097/NEN.0b013e31816ff780
  35. Bernstein C, Prasad AR, Nfonsam V, Bernstein H. DNA damage, DNA repair and cancer. In: Chen C, editor. New research directions in DNA repair. InTech, 2013. P. 413–465. doi: 10.5772/53919
  36. Pierce BA. Genetics: A conceptual approach. 4th edit. New York: W.H. Freeman, 2012.
  37. Stepchenkova EI, Kochenova OV, Inge-Vechtomov SG. “Illegal” hybridization and “illegal” cytoreduction in heterogaline yeast Saccharomyces cerevisiae as a system for analysis of genetic activity of exogenous and endogenous factors in the “alpha test”. Vestniks of Saint Petersburg University. 2009;3(4):129–140.
  38. Repnevskaya MV. Hereditary and nonhereditary changes in mating type in the yeast Saccharomyces cerevisiae [dissertation]. Leningrad, 1989. 210 p.
  39. Blanpain C, Mohrin M, Sotiropoulou PA, Passegue E. DNA-damage response in tissue-specific and cancer stem cell. Cell Stem Cell. 2011;8(1):16–29. doi: 10.1016/j.stem.2010.12.012
  40. Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;361(15):1475–1485. doi: 10.1056/NEJMra0804615
  41. Johnson FB, Sinclair DA, Guarente L. Molecular biology of aging. Cell. 1999;96(2):291–302. doi: 10.1016/S0092-8674(00)80567-X
  42. Basu S, Je G, Kim Y-S. Transcriptional mutagenesis by 8-oxodG in alpha-synuclein aggregation and the pathogenesis of Parkinson’s disease. Exp Mol Med. 2015;47:e179. doi: 10.1038/emm.2015.54
  43. Lindahl T, Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry. 1972;11(19):3618–3623. doi: 10.1021/bi00769a019
  44. Kingma PS, Corbett AH, Burcham PC, et al. Abasic sites stimulate double-stranded DNA cleavage mediated by topoisomerase II. DNA lesions as endogenous topoisomerase II poisons. J Biol Chem. 1995;270(37):21441–21444. doi: 10.1074/jbc.270.37.21441
  45. Boiteux S, Guillet M. Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair (Amst). 2004;3(1):1–12. doi: 10.1016/j.dnarep.2003.10.002
  46. Garcia CL, Carloni M, de la Pena NP, et al. Detection of DNA primary damage by premature chromosome condensation in human peripheral blood lymphocytes treated with methyl methanesulfonate. Mutagenesis. 2001;16(2):121–125. doi: 10.1093/mutage/16.2.121
  47. Howard-Flanders P, Boyce RP. DNA repair and genetic recombination: studies on mutants of Escherichia coli defective in these processes. Radiat Res. 1966;6:156–184. doi: 10.2307/3583555
  48. Zhuk AS, Shiriaeva AA, Andreychuk YV, et al. Detection of primary DNA lesions by transient changes in mating behavior in yeast saccharomyces cerevisiae using the alpha-test. Int J Mol Sci. 2023;24(15):12163. doi: 10.3390/ijms241512163
  49. McCulloch SD, Kunkel TA. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 2008;18(1):148–161. doi: 10.1038/cr.2008.4.
  50. Bregeon D, Doddridge ZA, You HJ, et al. Transcriptional mutagenesis induced by uracil and 8-oxoguanine in Escherichia coli. Mol Cell. 2003;12(4):959–970. doi: 10.1016/S1097-2765(03)00360-5
  51. Bregeon D, Peignon P-A, Sarasin A. Transcriptional mutagenesis induced by 8-oxoguanine in mammalian cells. PLoS Genet. 2009;5(7): e1000577. doi: 10.1371/journal.pgen.1000577
  52. Viswanathan A, You HJ, Doetsch PW. Phenotypic change caused by transcriptional bypass of uracil in nondividing cells. Science. 1999;284(5411):159–162. doi: 10.1126/science.284.5411.159
  53. Bregeon D, Doetsch PW. Transcriptional mutagenesis: causes and involvement in tumour development. Nat Rev Cancer. 2011;11(3):218–227. doi: 10.1038/nrc3006
  54. Morreall JF, Petrova L, Doetsch PW. Transcriptional mutagenesis and its potential roles in the etiology of cancer and bacterial antibiotic resistance. J Cell Physiol. 2013;228(12):2257–2261. doi: 10.1002/jcp.24400
  55. Rapoport IA. Specific morphoses in Drosophila melanogaster induced by chemical compounds. Bulletin of Experimental Biology and Medicine. 1939;(7):415–417. (In Russ.)
  56. Friesen G. X-ray morphosis in Drosophila. Biological Journal. 1935;4(4):687–704. (In Russ.)
  57. Zhuk AS, Stepchenkova EI, Inge-Vechtomov SG. Detection of the DNA primary structure modifications induced by the base analog 6-n-hydroxylaminopurine in the alpha-test in yeast saccharomyces cerevisiae. Ecological genetics. 2020;18(3):357–366. doi: 10.17816/ecogen34581
  58. Stepchenkova EI, Kochenova OV, Zhuk AS, et al. Phenotypic manifestation and trans-conversion of primary genetic material damages considered in the alpha-test on the yeast Saccharomyces cerevisiae. Gig Sanit. 2011;(6):64–69.
  59. Stepchenkova EI, Andreychuk YV, Afanasova DV, et al. The nm-test — improved version of the alpha-test in the yeast saccharomyces cerevisiae with higher sensitivity to genotoxic factors. Russian Journal of Genetics. 2023;59(1):12–17. doi: 10.1134/S1022795422120122
  60. Stepchenkova EI, Zhuk AS, Cui J, et al. Compensation for the absence of the catalytically active half of DNA polymerase ε in yeast by positively selected mutations in CDC28. Genetics. 2021;218(2): iyab060. doi: 10.1093/genetics/iyab060
  61. Kochenova OV, Soshkina JV, Stepchenkova EI, et al. Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae. Biochemistry (Moscow). 2011;76(1):49–60. doi: 10.1134/s000629791101007x
  62. Andreychuk YV, Zhuk AS, Inge-Vechtomov SG, et al. Sup35 prionization [PSI+] influence the frequency of the gene and chromosome mutations, accounted in the alpha-test in yeast Saccharomyces cerevisiae. Ecological genetics. 2015;13(4):22–24. doi: 10.17816/ecogen13422-24
  63. Abilev SK, Glazer MM, Aslanian MM. Fundamentals of mutagenesis and genotoxicology. Lectures: textbook. Moscow, Saint Petersburg: Nestor-Istoriya, 2012. 148 p.
  64. Dearfield KL, Cimino MC, McCarroll NE, et al. Genotoxicity risk assessment: a proposed classification strategy. Mutat Res. 2002;521(1–2):121–135. doi: 10.1016/S1383-5718(02)00236-X
  65. de Serres F, Hollaender A. Chemical mutagens. Principles and methods for their detection. Vol. 6. New York, London: Plenum press, 1984. 306 p. doi: 10.1007/978-1-4613-2771-4
  66. Geraskin SA, Sarapultseva EI, Tsatsenko LV, et al. Biological control of the environment. Genetic monitoring. Moscow: Akademiya, 2010. 208 p.
  67. Mohamed S., Sabita U., Rajendra S., Raman D. Genotoxicity: mechanisms, testing guidelines and methods. Global J Pharm Pharm Sci. 2017;1(5):555575. doi: 10.19080/GJPPS.2017.01.555575
  68. Kumari S, Rastogi RP, Singh KL, Singh SP. DNA damage: Detection strategies. EXCLI Journal. 2008;7:44–62. doi: 10.17877/DE290R-8293
  69. Olive PL, Banath JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc. 2006;1(1):23–29. doi: 10.1038/nprot.2006.5
  70. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–191. doi: 10.1016/0014-4827(88)90265-0
  71. Liao W, McNutt MA, Zhu W-G. The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods. 2009;48(1):46–53. doi: 10.1016/j.ymeth.2009.02.016
  72. Rastogi RP, Richa, Kumar A, et al. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids. 2010;2010:592980. doi: 10.4061/2010/592980
  73. Sharma A, Singh K, Almasan A. Histone H2AX phosphorylation: A marker for DNA damage. Bjergbæk L, editor. DNA Repair protocols. Methods in molecular biology. Vol. 920. Humana Press, Totowa, 2012. P. 613–626. doi: 10.1007/978-1-61779-998-3_40
  74. Chowdhury D, Keogh M-C, Ishii H, et al. gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell. 2005;20(5):801–809. doi: 10.1016/j.molcel.2005.10.003
  75. Ismail IH, Wadhra TI, Hammarsten O. An optimized method for detecting gamma-H2AX in blood cells reveals a significant interindividual variation in the gamma-H2AX response among humans. Nucleic Acids Res. 2007;35(5):e36. doi: 10.1093/nar/gkl1169
  76. Heddle JA. A rapid in vivo test for chromosomal damage. Mutat Res. 1973;18(2):187–190. doi: 10.1016/0027-5107(73)90035-3
  77. Schmid W. Chemical mutagen testing on in vivo somatic mammalian cells. Agents Actions. 1973;3(2):77–85. doi: 10.1007/BF01986538
  78. Nikitaki Z, Hellweg CE, Georgakilas AG, Ravanat J-L. Stress-induced DNA damage biomarkers: applications and limitations. Front Chem. 2015;3:35. doi: 10.3389/fchem.2015.00035
  79. Lee SF, Pervaiz S. Assessment of oxidative stress-induced DNA damage by immunoflourescent analysis of 8-oxodG. Methods Cell Biol. 2011;103:99–113. doi: 10.1016/B978-0-12-385493-3.00005-X
  80. Gamboa da Costa G, Singh R, Arlt VM, et al. Quantification of 3-nitrobenzanthrone-DNA adducts using online column-switching HPLC-electrospray tandem mass spectrometry. Chem Res Toxicol. 2009;22(11):1860–1868. doi: 10.1021/tx900264v
  81. Roberts KP, Sobrino JA, Payton J, et al. Determination of apurinic/apyrimidinic lesions in DNA with high-performance liquid chromatography and tandem mass spectrometry. Chem Res Toxicol. 2006;19(2):300–309. doi: 10.1021/tx0502589
  82. Ma W, Westmoreland JW, Gordenin DA, Resnick MA. Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease. PLoS Genet. 2011;7(4):e1002059. doi: 10.1371/journal.pgen.1002059

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The relationship between mutations and repair

Download (173KB)
3. Fig. 2. Primary DNA lesions, repair mechanisms, and the cell cycle stages during which the corresponding repair systems are active [39]

Download (437KB)
4. Fig. 3. Interconversion of primary DNA lesions during repair

Download (125KB)
5. Fig. 4. Main similarities and differences between genetic material alterations of two types — primary lesions and mutations

Download (252KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies