The effects of overexpression of human APP on cholinergic and dopaminergic neurons of brain of Drosophila melanogaster

Cover Page

Cite item

Full Text

Abstract

The influence of APP overexpression on cholinergic and dopaminergic neuronal populations was investigated. The number of cholinergic neurons, which was the same in the control and APP expressing young flies, decreased in the APP expressing flies with age. The number of dopaminergic neurons in APP expressing flies was significantly reduced after the 15th day. Neurodegeneration was followed by the deficit of memory and learning abilities of the flies with APP expression as well as the flies with amyloid-beta-peptide production

About the authors

Olga Igorevna Bolshakova

B. P. Konstantinov Petersburg Nuclear Physics Institute

Email: olya99991@yandex.ru
research associate

Anna Aleksandrovna Zhuk

B.P. Konstantinov Petersburg Nuclear Physics Institute

Email: azhukomi@mail.ru
senior technician

Dmitriy Igorevich Rodin

B.P. Konstantinov Petersburg Nuclear Physics Institute

Email: nomadkml@me.com
Junior Researcher

Svetlana Vladimirovna Sarantseva

B.P. Konstantinov Petersburg Nuclear Physics Institute

Email: svesar1@yandex.ru
Head of Laboratory, Ph.D

Galina Alekseevna Kislik

B.P. Konstantinov Petersburg Nuclear Physics Institute

Email: kislikgalina@hotmail.com
Junior Researcher

References

  1. Bonda J. D., Wang X., Gustaw-Rothenberg K. et al., 2009. Mitochondrial Drugs for Alzheimer Disease //Pharmaceuticals. Vol. 2. P. 287–298.
  2. Botella J., Bayersdorfer F., Schneuwly S., 2008. Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson's disease // Neurobiology of Desease. Vol. 30. P. 75–73.
  3. Brand A. H., Perrimon N., 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes // Development. Vol. 118. P. 401–415.
  4. Burns J. M., Galvin J. E., Roe C. M. et al., 2005. The pathology of the substantia nigra in Alzheimer disease with extrapyramidal signs // Neurology. Vol. 64. P. 1397–1403.
  5. Cao X., Südhof T. C., 2001. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60 //Science. Vol. 293. P. 115–120.
  6. Cao X., Südhof T. C., 2004. Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation // J. Biol. Chem. Vol. 279. P. 24601–24611.
  7. Chen K. H., Reese E. A., Kim H-W. et al., 2011. Disturbed Neurotransmitter Transporter Expression in Alzheimer Disease Brain // J. Alzheimers Dis. Vol. 26. P. 755–766.
  8. Claasen A. M., Guévremont D., Mason-Parker S. E. et al., 2009. Secreted amyloid precursor protein-alpha upregulates synaptic protein synthesis by a protein kinase G-dependent mechanism. // Neur. Lett. Vol. 460. P. 92–96.
  9. Davies P., 1979. Neurotransmitter-related enzymes in senile dementia of Alzheimer type // Brain Res. Vol. 171. P. 319–327.
  10. Exley R., McIntosh J. M., Marks M. J. et al., 2012. Striatal α5 nicotinic receptor subunit regulates dopamine transmission in dorsal striatum // J. Neurosci. Vol. 32. P. 2352–2356.
  11. Francis P. T., Palmer A. M., Snape M., Wilcock G. K., 1999. The cholinergic hypothesis of Alzheimer’s disease: a review of progress // J. Neurol. Neurosurg. Psychiatry. Vol. 66. P. 137–147.
  12. Ghosal K., Vogt D. L., Liang M. et al., 2009. Alzheimer's disease-like pathological features in transgenic mice expressing the APP intracellular domain // Proc. Natl. Acad. Sci. USA. Vol. 106. P. 18367–18372.
  13. Guan Z. Z., Zhang X., Ravid R., Nordberg A., 2000. Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer's disease // J. Neurochem. Vol. 74. P. 237–243.
  14. Hardy J., Selkoe D. J., 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. An updated summary of the amyloid hypothesis // Science. Vol. 297. P. 353–356.
  15. Iijima-Ando K., Iijima K., 2010. Transgenic Drosophila models of Alzheimer's disease and tauopathies //Brain Struct. Funct. Vol. 214. P. 245–262.
  16. Kar S., Slowikowski S.P, Westaway D, Mount H. T., 2004. Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease // J. Psychiatry Neurosci. Vol. 29. P. 427–468.
  17. Kazee A. M., Cox C., Richfield E. K., 1995. Substantia nigra lesions in Alzheimer disease and normal aging //Alzheimer Dis. Assoc. Disord. Vol. 9. P. 61–67.
  18. Kim H., Kim E., Lee J. et.al., 2003. C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3β expression. // The FASEB Journal. Vol. 17. P. 1951–1953.
  19. Li Y., Liu T., Peng Y. et al., 2004. Specific functions of Drosophila amyloid precursor-like protein in the development of nervous system and nonneural tissues //J. Neurobiol. Vol. 61. P. 343–58.
  20. Luo L., Tully T., White K., 1992. Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for Appl gene // Neuron. Vol. 9. P. 595–605.
  21. Mesulam M. M., Mufson E. J., Wainer B. H., Levey A. I., 1983. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6) // Neuroscience. Vol. 10. P. 1185–1201.
  22. Mohandas E., Rajmohan V., Raghunath B., 2009. Neurobiology of Alzheimer's disease // Indian J. Psychiatry. Vol. 51. P. 55–61.
  23. Müller T., Concannon C. G., Ward M. W. et al. Modulation of gene expression and cytoskeletal dynamics by the amyloid precursor protein intracellular domain (AICD) // Biol. Cell. 2007. V. 18. P. 201–210.
  24. Müller U. C., Zheng H., 2012. Physiological Functions of APP Family Proteins // Cold Spring Harb Perspect Med. Vol. 2: a006288.
  25. Perez S. E., Lazarov O., Koprich J. B. et al., 2005. Nigrostriatal Dysfunction in Familial Alzheimer’s Disease-Linked APPswe/PS1-E9 Transgenic Mice // The Journal of Neuroscience Vol. 25. P. 10220 –10229.
  26. Perry E. K., Morris C. M., Court J. A. et al., 1995. Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer's disease: possible index of early neuropathology // Neurosci. Vol. 64. P. 385–395.
  27. Pimplikar S. W., Nixon R. A., Robakis N. K. et al., 2010. Amyloid-independent mechanisms in Alzheimer's disease pathogenesis // J. Neurosci. Vol. 30. P. 14946–14954.
  28. Sarantseva S., Timoshenko S., Bolshakova O. et al., 2009. Apolipoprotein E-Mimetics Inhibit Neurodegeneration and Restore Cognitive Functions in a Transgenic Drosophila Model of Alzheimer's Disease // PloS One. Vol. 4. e8191.
  29. Saura C. A., Choi S.-U., Beglopoulos V. et al. 2004. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration // Neuron. Vol. 42. P. 23–36.
  30. Schaeffer E. L., Gattaz W. F., 2008 Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme // Psychopharmacology. Vol. 198. P. 1–27.
  31. Stokin G. B., Almenar-Queralt A., Gunawardena S. et al., 2008. Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides // Hum. Mol. Genet. Vol. 17. P. 3474–3486.
  32. Słomnicki L. P., Leśniak W., 2008. A putative role of the Amyloid Precursor Protein Intracellular Domain (AICD) in transcription // Acta Neurobiol. Exp (Wars). Vol. 68. P. 219–228.
  33. Sun C., Ou X., Farley J. M., Stockmeier C. et al., 2012. Allopregnanolone Increases the Number of Dopaminergic Neurons in Substantia Nigra of a Triple Transgenic Mouse Model of Alzheimer’s Disease // Curr. Alzheimer Res. Vol. 9. P. 473–480.
  34. Thinakaran G., Koo H. E., 2008. Amyloid Precursor Protein: Trafficking, Processing and Function // J. Biol. Chem. Vol. 283. P. 296–304.
  35. Tiraboschi P., Hansen L. A., Alford M. et al., 2000. The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease // Neurology. Vol. 55. P. 1278–1283.
  36. Torroja L., Packard M., Gorczyca M. et al., 1999. Drosophila b-Amyloid Precursor Protein homolog promotes synapse differentiation at the neuromuscular junction // J. Neurosci. Vol. 15. P. 7793–7803.
  37. Tully T., Quinn W., 1985. Classical conditioning and retention in normal and mutant Drosophila melanogaster // Journal of Comparative Physiology. Vol. P. 263–277.
  38. Walsh D. M., Selkoe D. J., 2004. Deciphering the molecular basis of memory failure in Alzheimer's disease // Neuron. Vol. 44. P. 181–193.
  39. Whitehouse R. J., Price D. L., Struble R. G. et al., 1982. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain // Science. Vol. 215. P. 1237–1239.
  40. Yagi Y., Tomita S., Nakamura M. et al., 2000. Overexpression of human amyloid precursor protein in Drosophila // Mol. Cell. Biol. Res. Comm. Vol. 157. P. 263–277.

Copyright (c) 2013 Bolshakova O.I., Zhuk A.A., Rodin D.I., Sarantseva S.V., Kislik G.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies