Влияние гиперэкспрессии гена АРР человека на холинергические и дофаминергические нейроны Drosophila melanogaster

Обложка

Цитировать

Полный текст

Аннотация

Исследовано влияние экспрессии гена белка предшественника амилоида (АРР) на популяции холинергических и дофаминергических нейронов. Количество холинергических нейронов, измеренное по уровню общей флуоресценции в мозге, было одинаковым в контрольной и опытных линиях в первые дни жизни мух, и снижалось в линиях, экспрессирующих АРР с возрастом. Количество дофаминергических нейронов в линиях, экспрессирующих АРР, было достоверно ниже, начиная с 15-го дня. Нейродегенерация сопровождалась уменьшением способности мух к обучению и запоминанию как для линий, экспрессирующих только АРР (АРР-Swedish), так и для линий с образованием амилоидного пептида бета (Аβ).

Об авторах

Ольга Игоревна Большакова

Федеральное государственное бюджетное учреждение Петербургский институт ядерной физики им. Б. П. Константинова

Email: olya99991@yandex.ru
научный сотрудник

Анна Александровна Жук

Федеральное государственное бюджетное учреждение Петербургский институт ядерной физики им. Б. П. Константинова

Email: azhukomi@mail.ru
старший лаборант

Дмитрий Игоревич Родин

Федеральное государственное бюджетное учреждение Петербургский институт ядерной физики им. Б. П. Константинова

Email: nomadkml@me.com
младший научный сотрудник

Светлана Владимировна Саранцева

Федеральное государственное бюджетное учреждение Петербургский институт ядерной физики им. Б. П. Константинова

Email: svesar1@yandex.ru
руководитель лаборатории, к. б. н.

Галина Алексеевна Кислик

Федеральное государственное бюджетное учреждение Петербургский институт ядерной физики им. Б. П. Константинова

Email: kislikgalina@hotmail.com
младший научный сотрудник

Список литературы

  1. Bonda J. D., Wang X., Gustaw-Rothenberg K. et al., 2009. Mitochondrial Drugs for Alzheimer Disease //Pharmaceuticals. Vol. 2. P. 287–298.
  2. Botella J., Bayersdorfer F., Schneuwly S., 2008. Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson's disease // Neurobiology of Desease. Vol. 30. P. 75–73.
  3. Brand A. H., Perrimon N., 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes // Development. Vol. 118. P. 401–415.
  4. Burns J. M., Galvin J. E., Roe C. M. et al., 2005. The pathology of the substantia nigra in Alzheimer disease with extrapyramidal signs // Neurology. Vol. 64. P. 1397–1403.
  5. Cao X., Südhof T. C., 2001. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60 //Science. Vol. 293. P. 115–120.
  6. Cao X., Südhof T. C., 2004. Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation // J. Biol. Chem. Vol. 279. P. 24601–24611.
  7. Chen K. H., Reese E. A., Kim H-W. et al., 2011. Disturbed Neurotransmitter Transporter Expression in Alzheimer Disease Brain // J. Alzheimers Dis. Vol. 26. P. 755–766.
  8. Claasen A. M., Guévremont D., Mason-Parker S. E. et al., 2009. Secreted amyloid precursor protein-alpha upregulates synaptic protein synthesis by a protein kinase G-dependent mechanism. // Neur. Lett. Vol. 460. P. 92–96.
  9. Davies P., 1979. Neurotransmitter-related enzymes in senile dementia of Alzheimer type // Brain Res. Vol. 171. P. 319–327.
  10. Exley R., McIntosh J. M., Marks M. J. et al., 2012. Striatal α5 nicotinic receptor subunit regulates dopamine transmission in dorsal striatum // J. Neurosci. Vol. 32. P. 2352–2356.
  11. Francis P. T., Palmer A. M., Snape M., Wilcock G. K., 1999. The cholinergic hypothesis of Alzheimer’s disease: a review of progress // J. Neurol. Neurosurg. Psychiatry. Vol. 66. P. 137–147.
  12. Ghosal K., Vogt D. L., Liang M. et al., 2009. Alzheimer's disease-like pathological features in transgenic mice expressing the APP intracellular domain // Proc. Natl. Acad. Sci. USA. Vol. 106. P. 18367–18372.
  13. Guan Z. Z., Zhang X., Ravid R., Nordberg A., 2000. Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer's disease // J. Neurochem. Vol. 74. P. 237–243.
  14. Hardy J., Selkoe D. J., 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. An updated summary of the amyloid hypothesis // Science. Vol. 297. P. 353–356.
  15. Iijima-Ando K., Iijima K., 2010. Transgenic Drosophila models of Alzheimer's disease and tauopathies //Brain Struct. Funct. Vol. 214. P. 245–262.
  16. Kar S., Slowikowski S.P, Westaway D, Mount H. T., 2004. Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease // J. Psychiatry Neurosci. Vol. 29. P. 427–468.
  17. Kazee A. M., Cox C., Richfield E. K., 1995. Substantia nigra lesions in Alzheimer disease and normal aging //Alzheimer Dis. Assoc. Disord. Vol. 9. P. 61–67.
  18. Kim H., Kim E., Lee J. et.al., 2003. C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3β expression. // The FASEB Journal. Vol. 17. P. 1951–1953.
  19. Li Y., Liu T., Peng Y. et al., 2004. Specific functions of Drosophila amyloid precursor-like protein in the development of nervous system and nonneural tissues //J. Neurobiol. Vol. 61. P. 343–58.
  20. Luo L., Tully T., White K., 1992. Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for Appl gene // Neuron. Vol. 9. P. 595–605.
  21. Mesulam M. M., Mufson E. J., Wainer B. H., Levey A. I., 1983. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6) // Neuroscience. Vol. 10. P. 1185–1201.
  22. Mohandas E., Rajmohan V., Raghunath B., 2009. Neurobiology of Alzheimer's disease // Indian J. Psychiatry. Vol. 51. P. 55–61.
  23. Müller T., Concannon C. G., Ward M. W. et al. Modulation of gene expression and cytoskeletal dynamics by the amyloid precursor protein intracellular domain (AICD) // Biol. Cell. 2007. V. 18. P. 201–210.
  24. Müller U. C., Zheng H., 2012. Physiological Functions of APP Family Proteins // Cold Spring Harb Perspect Med. Vol. 2: a006288.
  25. Perez S. E., Lazarov O., Koprich J. B. et al., 2005. Nigrostriatal Dysfunction in Familial Alzheimer’s Disease-Linked APPswe/PS1-E9 Transgenic Mice // The Journal of Neuroscience Vol. 25. P. 10220 –10229.
  26. Perry E. K., Morris C. M., Court J. A. et al., 1995. Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer's disease: possible index of early neuropathology // Neurosci. Vol. 64. P. 385–395.
  27. Pimplikar S. W., Nixon R. A., Robakis N. K. et al., 2010. Amyloid-independent mechanisms in Alzheimer's disease pathogenesis // J. Neurosci. Vol. 30. P. 14946–14954.
  28. Sarantseva S., Timoshenko S., Bolshakova O. et al., 2009. Apolipoprotein E-Mimetics Inhibit Neurodegeneration and Restore Cognitive Functions in a Transgenic Drosophila Model of Alzheimer's Disease // PloS One. Vol. 4. e8191.
  29. Saura C. A., Choi S.-U., Beglopoulos V. et al. 2004. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration // Neuron. Vol. 42. P. 23–36.
  30. Schaeffer E. L., Gattaz W. F., 2008 Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme // Psychopharmacology. Vol. 198. P. 1–27.
  31. Stokin G. B., Almenar-Queralt A., Gunawardena S. et al., 2008. Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides // Hum. Mol. Genet. Vol. 17. P. 3474–3486.
  32. Słomnicki L. P., Leśniak W., 2008. A putative role of the Amyloid Precursor Protein Intracellular Domain (AICD) in transcription // Acta Neurobiol. Exp (Wars). Vol. 68. P. 219–228.
  33. Sun C., Ou X., Farley J. M., Stockmeier C. et al., 2012. Allopregnanolone Increases the Number of Dopaminergic Neurons in Substantia Nigra of a Triple Transgenic Mouse Model of Alzheimer’s Disease // Curr. Alzheimer Res. Vol. 9. P. 473–480.
  34. Thinakaran G., Koo H. E., 2008. Amyloid Precursor Protein: Trafficking, Processing and Function // J. Biol. Chem. Vol. 283. P. 296–304.
  35. Tiraboschi P., Hansen L. A., Alford M. et al., 2000. The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease // Neurology. Vol. 55. P. 1278–1283.
  36. Torroja L., Packard M., Gorczyca M. et al., 1999. Drosophila b-Amyloid Precursor Protein homolog promotes synapse differentiation at the neuromuscular junction // J. Neurosci. Vol. 15. P. 7793–7803.
  37. Tully T., Quinn W., 1985. Classical conditioning and retention in normal and mutant Drosophila melanogaster // Journal of Comparative Physiology. Vol. P. 263–277.
  38. Walsh D. M., Selkoe D. J., 2004. Deciphering the molecular basis of memory failure in Alzheimer's disease // Neuron. Vol. 44. P. 181–193.
  39. Whitehouse R. J., Price D. L., Struble R. G. et al., 1982. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain // Science. Vol. 215. P. 1237–1239.
  40. Yagi Y., Tomita S., Nakamura M. et al., 2000. Overexpression of human amyloid precursor protein in Drosophila // Mol. Cell. Biol. Res. Comm. Vol. 157. P. 263–277.

© Большакова О.И., Жук А.А., Родин Д.И., Саранцева С.В., Кислик Г.А., 2013

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах