Molecular genetic mechanisms of sugar transport in plants in the absence and during arbuscular mycoryza development

Cover Page

Cite item

Abstract

The review is aimed to analyze molecular mechanisms of carbohydrate transport during the formation of arbuscular mycorrhiza (AM), a widespread symbiosis of plants with Glomeromycotina subdivision fungi. Due to AM-symbiosis, plants receive microelements, mainly phosphorus, and fungi are supplied by products of carbon assimilation. The study of sugar transport mechanisms in plants as well as between plants and symbiont is methodologically difficult because of the obligatory status of AM fungi. The mechanisms of carbohydrate transport in leaf and root cells are concerned, particular interest is paid to transporters, specific to AM structures. Several resumptive schemes are designed. SWEET family of transporters (Sugars Will Eventually be Exported Transporters), including AM-specific uniporters are reviewed. We summarize results on expression of genes encoding transporter in cells of plants without AM, in AM-plant cells with arbuscules and AM-plant cells without arbuscules. The data on genes of MST proteins family (Monosaccharide Transporters) participating in direct transport of sugars from the soil to the foliar mycelium of AM fungi are considered.

About the authors

Andrey P. Yurkov

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: yurkovandrey@yandex.ru
ORCID iD: 0000-0002-2231-6466
SPIN-code: 9909-4280
Scopus Author ID: 56835374200
ResearcherId: A-8513-2014
https://vk.com/andreyyurkov

PhD (Candidate of Biology), Assistant Professor, Leading Researcher, Laboratory No 4 of Ecology of Symbiotic and Associative Rhizobacteria

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Alexey A. Kryukov

All-Russia Research Institute for Agricultural Microbiology

Email: rainniar@rambler.ru
SPIN-code: 4685-2723
Scopus Author ID: 57104771700

PhD (Candidate of Biology), Researcher, Laboratory No 4 of Ecology of Symbiotic and Associative Rhizobacteria

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Anastasia O. Gorbunova

Saint Petersburg State University

Email: gorbunova.anastasia93@mail.ru
SPIN-code: 3515-6450

Graduate Student, Department of Geobotany and Plant Ecology, Faculty of Biology

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

Alexei M. Afonin

All-Russia Research Institute for Agricultural Microbiology

Email: aafonin@arriam.ru
SPIN-code: 9321-2462

Graduate Student, Laboratory No 9

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Anastasija A. Kirpichnikova

Saint Petersburg State University

Email: nastin1972@mail.ru
SPIN-code: 9960-9527

Junior Researcher, Department of Plant Physiology and Biochemistry, Faculty of Biology

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

Ksenia S. Dobryakova

Komarov Botanical Institute, Russian Academy of Sciences

Email: kdobryakova@mail.ru
SPIN-code: 4197-0725
Scopus Author ID: 57200207883

PhD (Candidate of Biology), Junior Researcher, Laboratory of Molecular and Ecological Physiology.

Russian Federation, 2, Professor Popov str., Saint Petersburg, 197376

Eduard M. Machs

Komarov Botanical Institute, Russian Academy of Sciences

Email: emachs@binran.ru
SPIN-code: 9496-0538
Scopus Author ID: 8619012500

PhD (Candidate of Biology), Senior Researcher, Laboratory of Biosystematics and Plant Cytology

Russian Federation, 2, Professor Popov str., Saint Petersburg, 197376

Maria F. Shishova

Saint Petersburg State University

Email: mshishova@mail.ru
ORCID iD: 0000-0003-3657-2986
SPIN-code: 7842-7611
Scopus Author ID: 6602992714

Doctor of Science in Biology, Professor, Department of Plant Physiology and Biochemistry

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

References

  1. Spatafora JW, Chang Y, Benny GL, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2017;108(5):1028-46. https://doi.org/10.doi: 10.3852/16-042.
  2. Van der Heijden MGA, Boller T, Wiemken A, San ders IR. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology. 1998;79:2082-2091. https://doi.org/10.1890/0012-9658(1998)079[2082: DAMFSA]2.0.CO;2.
  3. Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge; 2008. 787 p.
  4. Pyrozynski KA, Malloch DW. The origin of land plants: a matter of mycotrophism. Biosystems. 1975;6(3),153-164.
  5. Beilby JP, Kidby DK. Biochemistry of ungerminated and germinated spores of the vesicular-arbuscular mycorrhizal fungus, Glomus caledonius: changes in neutral and polar lipids. J Lipid Res. 1980;21(6):739-750.
  6. Luginbuehl LH, Oldroyd GED. Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Curr Biol. 2017;27(17): R952-R963. https://doi.org/10.1016/j.cub.2017.06.042.
  7. Fitter A. Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experientia. 1991;47(4):350-355. https://doi.org/10.1007/BF01972076.
  8. Li H, Smith FA, Dickson S, et al. Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain? New Phytol. 2008;178:852-862. https://doi.org/10.1111/j.1469-8137.2008.02410.x.
  9. Büchel DE, Gronenborn B, Müller-Hill B. Sequence of the lactose permease gene. Nature. 1980;283:541-5. https://doi.org/10.1038/283541a0.
  10. Mueckler M, Caruso C, Baldwin SA, Panico M. Sequence and structure of a human glucose transporter. Science. 1985;229(4717):941-945. https://doi.org/10.1126/science.3839598.
  11. Hediger MA, Coady MJ, Ikeda TS, Wright EM. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature. 1987;330:379-381. https://doi.org/10.1038/330379a0.
  12. Celenza JL, Marshall-Carlson L, Carlson M. The yeast snf3 gene encodes a glucose transporter homologous to the mammalian protein. PNAS. 1988;85:2130-2134. https://doi.org/10.1073/pnas.85.7.2130.
  13. Sauer N, Tanner W. The hexose carrier from Chlorella. cDNA cloning of a eucaryotic H+-cotransporter. FEBS Lett. 1989;259(1):43-46. https://doi.org/10.1016/0014-5793(89)81489-9.
  14. Sauer N, Friedlander K, Graml-Wicke U. Primary structure, genomic organization and heterologous expression of a glucose transporter from Arabidopsis thaliana. EMBO J. 1990;9(10):3045-3050. https://doi.org/10.1002/j.1460-2075.1990.tb07500.x.
  15. Lewis DA, Bisson LF. The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol Cell Biol. 1991;11(7):3804-13. https://doi.org/10.1128/MCB.11.7.3804.
  16. Riesmeier JW, Willmitzer L, Frommer WB. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 1992;11(13):4705-4713. https://doi.org/10.1002/j.1460-2075.1992.tb05575.x.
  17. Doidy J, Grace E, Kühn C, et al. Sugar transporters in plants and in their interactions with fungi. Trends in Plant Science. 2012a;17(7):413-422. https://doi.org/ 10.16/j.tplants.2012.03.009.
  18. Lemoine R, La Camera S, Atanassova R, et al. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science. 2013;4:272.
  19. Ludewig F, Flügge UI. Role of metabolite transporters in source-sink carbon allocation. Front Plant Sci. 2013;4:231. https://doi.org/10.3389/fpls.2013.00231.
  20. Wei X, Liu F, Chen C, et al. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars. Front Plant Sci. 2014;5:569. https://doi.org/10.3389/fpls.2014.00569.
  21. Wormit A, Trentmann O, Feifer I, et al. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell. 2006;18:3476-90. https://doi.org/10.1105/tpc.106.047290.
  22. Chen LQ, Hou BH, Lalonde S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010;468(7323):527-532. https://doi.org/10.1038/nature09606.
  23. Jung B, Ludewig F, Schulz A, et al. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. Nature Plants 1. 2015;14001. https://doi.org/10.1038/nplants.2014.1.
  24. Fliege R, Flugge UI, Werdan K, Heldt HW. Specific transport of inorganic phosphate, 3-phosphoglycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim Biophys Acta. 1978;502(2):232-247. https://doi.org/10.1016/0005-2728(78)90045-2.
  25. Flügge UI, Fischer K, Gross A, et al. The triose phosphate-3-phosphoglycerate-phosphate transloca tor from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J. 1989;8(1):39-46. https://doi.org/10.1002/ j.1460-2075.1989.tb03346.x.
  26. Weber A, Servaites JC, Geiger DR, et al. Identification, purification, and molecular cloning of a putative plastidic glucose translocator. Plant Cell. 2000;12(5):787-802. https://doi.org/10.1105/tpc.12.5.787.
  27. Büttner M. The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett. 2007;581(12):2318-24. https://doi.org/10.1016/j.febslet.2007.03.016.
  28. Niittylä T, Messerli G, Trevisan M, et al. A previously unknown maltose transporter essential for starch degradation in leaves. Science. 2004;303(5654):87-89. https://doi.org/10.1126/science.1091811.
  29. Wang J, Wang X, Geng S, et al. Genome-wide identification of hexokinase gene family in Brassica napus: structure, phylogenetic analysis, expression, and functional characterization. Planta. 2018;248:171-182. https://doi.org/10.1007/s00425-018-2888-8.
  30. Moore B, Zhou L, Rolland F, et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science. 2003;300:332-336. https://doi.org/10.1126/science.1080585.
  31. Van Dingenen J, Antoniou C, Filippou P, et al. Strobilurins as growth-promoting compounds: how stroby regulates Arabidopsis leaf growth. Plant Cell and Environment. 2017;40(9):1748-60. https://doi.org/10.1111/pce.12980.
  32. Hohnjec N, Becker JD, Puhler A, et al. Genomic organization and expression properties of the MtSucS1 gene, which encodes a nodule enhanced sucrose synthase in the model legume Medicago truncatula. Mol Gen Genet. 1999;261:514-522. https://doi.org/10.1007/s004380050995.
  33. Baud S, Vaultier MN, Rochat C. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot. 2004;55(396):397-409. https://doi.org/10.1093/jxb/erh047.
  34. Hirose T, Scofield GN, Terao T. An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Sci. 2008;174(5):534-543. https://doi.org/10.1016/j.plantsci.2008.02.009.
  35. Zhang DQ, Xu BH, Yang XH, et al. The sucrose synthase gene family in Populus: structure, expression, and evolution. Tree Genet Genomes. 2011;7(3):443-56. https://doi.org/10.1007/s11295-010-0346-2.
  36. Xiao X, Tang C, Fang Y, et al. Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers. FEBS Journal. 2013;281(1):291-305. https://doi.org/10.1111/febs.12595.
  37. Sauer N. Molecular physiology of higher plant sucrose transporters. FEBS Lett. 2007;581:2309-2317. https://doi.org/10.1016/j.febslet.2007.03.048.
  38. Kühn C, Grof CP. Sucrose transporters of higher plants. Curr Opin Plant Biol. 2010;13(3):288-298. https://doi.org/10.1016/j.pbi.2010.02.001.
  39. Payyavula RS, Tay KH, Tsai CJ, Harding SA. The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant J. 2011;65(5):757-770. https://doi.org/10.1111/j.1365-313X.2010.04463.x.
  40. Zhou Y, Qu H, Dibley KE, et al. A suite of sucrose transporters expressed in coats of developing legume seeds includes novel pH-independent facilitators. Plant J. 2007;49(4):750-764. https://doi.org/10.1111/j.1365-313X.2006.03000.x.
  41. Chardon F, Bedu M, Calenge F, et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr Biol. 2013;23(8):697-702. https://doi.org/10.1016/j.cub.2013.03.021.
  42. Aluri S, Büttner M. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proc Natl Acad Sci USA. 2007;104(7):2537-42. https://doi.org/10.1073/pnas.0610278104.
  43. Taji Т, Ohsumi С, Iuchi S, et al. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 2002;29:417-426. https://doi.org/10.1046/j.0960-7412.2001.01227.x.
  44. Klepek YS, Volke M, Konrad KR, et al. Arabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTERS1 and 2: fructose and xylitol/H+ symporters in pollen and young xylem cells. J Exp Bot. 2010;61(2):537-550. https://doi.org/10.1093/jxb/erp322.
  45. Meyer S, Melzer M, Truernit E, et al. AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. Plant J. 2000;24(6):869-882. https://doi.org/10.1046/j.1365-313x.2000.00934.x.
  46. Halford NG, Curtis TY, Muttucumaru N, et al. Sugars in crop plants. Ann Appl Biol. 2011;158(1):1-25. https://doi.org/10.1111/j.1744-7348.2010.00443.x.
  47. Wang W, Zhou H, Ma B, et al. Divergent evolutionary pattern of sugar transporter genes is associated with the difference in sugar accumulation between Grasses and Eudicots. Sci Rep. 2016;6:29153. https://doi.org/10.1038/srep29153.
  48. Bago B, Pfeffer PE, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 2000;124:949-957. https://doi.org/10.1104/pp.124.3.949.
  49. Doidy J, van Tuinen D, Lamotte O, et al. The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi. Molecular Plant. 2012b;5(6):1346-1358. https://doi.org/10.1093/mp/sss079.
  50. Hennion N, Durand M, Vriet C, et al. Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiol Plant. 2019;165(1):44-57. https://doi.org/10.1111/ppl.12751.
  51. Milne RJ, Grof CP, Patrick JW. Mechanisms of phloem unloading: shaped by cellular pathways, their conductances and sink function. Curr Opin Plant Biol. 2018;43:8-15. https://doi.org/10.1016/j.pbi.2017.11.003.
  52. Wang W, Shi J, Xie Q, et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant. 2017;10(9):1147-1158. https://doi.org/10.1016/j.molp.2017.07.012.
  53. Weber AP, Linka N. Connecting the plastid: transporters of the plastid envelope and their role in linking plastidial with cytosolic metabolism. Annu Rev Plant Biol. 2011;62:53-77. https://doi.org/10.1146/annurev-arplant-042110-103903.
  54. Noronha H, Conde C, Delrot S, Gerós H. Identification and functional characterization of grapevine transporters that mediate glucose-6-phosphate uptake into plastids. Planta. 2015;242(4):909-920. https://doi.org/10.1007/s00425-015-2329-x.
  55. Denyer K, Dunlap F, Thorbjornsen T, et al. The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol. 1996;112(2):779-85. https://doi.org/10.1104/pp.112.2.779.
  56. Noronha H, Silva A, Dai Z, et al. A molecular perspective on starch metabolism in woody tissues. Planta. 2018;248(3):559-568. https://doi.org/10.1007/s00425-018-2954-2.
  57. Carpaneto A, Geiger D, Bamberg E, et al. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. J Biol Chem. 2005;280(22):21437-21443. https://doi.org/10.1074/jbc.M501785200.
  58. Fillion L, Ageorges A, Picaud S, et al. Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Plant Physiol. 1999;120(4):1083-1094. https://doi.org/10.1104/pp.120.4.1083.
  59. Ait Lahmidi N, Courty P-E, Brulé D, et al. Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner. Plant Physiol Biochem. 2016;107:354-363. https://doi.org/10.1016/j.plaphy.2016.06.023.
  60. Gaude N, Bortfeld S, Duensing N, et al. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J. 2012;69(3):510-528. https://doi.org/10.1111/j.1365-313X.2011.04810.x.
  61. Manck-Gotzenberger J, Requena N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci. 2016;7:487. https://doi.org/10.3389/fpls.2016.00487.
  62. Helber N, Wippel K, Sauer N, et al. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is сrucial for the symbiotic relationship with plants. The Plant Cell. 2011;23(10): 3812-23. https://doi.org/10.1105/tpc.111.089813.
  63. Garcia K, Doidy J, Zimmermann SD, et al. Take a trip through the plant and fungal transportome of Mycorrhiza. Trends Plant Sci. 2016;21(11):937-950. https://doi.org/10.1016/j.tplants.2016.07.010.
  64. Schüssler A, Martin H, Cohen D, et al. Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature. 2006;444:933-936. https://doi.org/10.1038/nature05364.
  65. Bitterlich M, Krügel U, Boldt-Burisch K, et al. The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation. Plant J. 2014;78(5):877-889. https://doi.org/10.1111/tpj.12515.
  66. Gutjahr C, Radovanovic D, Geoffroy J, et al. The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J. 2012;69(5):906-920. https://doi.org/10.1111/j.1365-313X.2011.04842.x.
  67. Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB. 2015;67(7):461-471. https://doi.org/10.1002/iub.1394.
  68. Nielsen KL, Bouma TJ, Lynch JP, Eissenstat DM. Effects of phosphorus availability and vesicular-arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris). New Phytol. 1998;139:647-656. https://doi.org/10.1046/j.1469-8137.1998.00242.x.
  69. Pfeffer PE, Douds DD, Becard G, Shachar-Hill Y. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol. 1999;120(2):587-598. https://doi.org/10.1104/pp.120.2.587.
  70. Smith SE, Smith FA. Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytologist. 1990;114(1):1-38. https://doi.org/10.1111/j.1469-8137.1990.tb00370.x.
  71. Smith SE, Dickson S, Smith FA. Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Australian J Plant Physiol. 2001;28(7):683-694. https://doi.org/10.1071/PP01033.
  72. Pumplin N, Harrison MJ. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physio logy. 2009;151(2):809-819. https://doi.org/10.1104/pp.109.141879.
  73. Veiga RS, Faccio A, Genre A, et al. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ. 2013;36(11):1926-1937. https://doi.org/10.1111/pce.12102.
  74. Yurkov AP, Veselova SV, Jacobi LM, et al. The effect of inoculation with arbuscular mycorrhizal fungus Rhizophagus irregularis on cytokinin content in highly mycotrophic Medicago lupulina line under low phosphorus level in soil. Plant Soil Environ. 2017;63(11):519-24. https://doi.org/10.17221/617/2017-PSE.
  75. Aldape MJ, Elmer AM, Chao WS, Grimes HD. Identification and characterization of a sucrose transporter isolated from the developing cotyledons of soybean. Archives Biochem Biophys. 2003;409(2):243-250. https://doi.org/10.1016/S0003-9861(02)00631-8.
  76. Weber H, Borisjuk L, Heim U, et al. A role for sugar transporters during seed development: molecular cha racterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell. 1997;9:895-908. https://doi.org/10.1105/tpc.9.6.895.
  77. Feuerstein A, Niedermeier M, Bauer K, et al. Expression of the AtSUC1 gene in the female gametophyte, and ecotype-specific expression differences in male reproductive organs. Plant Biol (Stuttg). 2010;12 Suppl 1:105-114. https://doi.org/10.1111/j.1438-8677.2010.00389.x.
  78. Kryvoruchko IS, Sinharoy S, Torres-Jerez I, et al. MtSWEET11, a nodule-specific sucrose transporter of Me dicago truncatula. Plant Physiol. 2016;171(1): 554-65. https://doi.org/10.1104/pp.15.01910.
  79. Reinders A, Sivitz AB, Starker CG, et al. Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicas. Plant Mol Biol. 2008;68(3):289-299. https://doi.org/10.1007/s11103-008-9370-0.
  80. Truernit E, Schmid J, Epple P, et al. The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. Plant Cell. 1996;8:2169-2182. https://doi.org/10.1105/tpc.8.12.2169.
  81. Nørholm MHH, Nour-Eldin HH, Brodersen P, et al. Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death. FEBS Lett. 2006;580(9):2381-2387. https://doi.org/10.1016/j.febslet.2006.03.064.
  82. Poschet G, Hannich B, Büttner M. Identification and characterization of AtSTP14, a novel galactose transporter from Arabidopsis. Plant Cell Physiol. 2010;51:1571-1580. https://doi.org/10.1093/pcp/pcq100.
  83. Li H, Li X, Xuan Y, et al. Genome wide identification and expression profiling of SWEET genes family reveals its role during Plasmodiophora brassicae-induced formation of clubroot in Brassica rapa. Front Plant Sci. 2018;9:207. https://doi.org/10.3389/fpls.2018.00207.
  84. Lin IW, Sosso D, Chen LQ, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET 9. Nature. 2014;508:546-549. https://doi.org/10.1038/nature13082.
  85. Liu Q, Yuan M, Zhou Y, et al. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ. 2011;34:1958-1969. https://doi.org/10.1111/j.1365-3040.2011.02391.x.
  86. Chen LQ, Cheung LS, Feng L, et al. Transport of sugars. Annu Rev Biochem. 2015;84:865-894. https://doi.org/10.1146/annurev-biochem-060614-033904.
  87. Yuan M, Wang S. Rice MtN3/saliva/SWEET family genes and their homologues in cellular organisms. Mol Plant. 2013;6(3):665-674. https://doi.org/10.1093/mp/sst035.
  88. Patil G, Valliyodan B, Deshmukh R, et al. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics. 2015;16:520. https://doi.org/10.1186/s12864-015-1730-y.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General scheme of transport of sugars from the aerial parts of the plants (based on materials presented by [17-20] with changes and additions). Source – leaf mesophyll donor cell (Source mesophyll cell), PD – Plasmodesma, Malt – Maltose, Sta – Starch, Chl – Chloroplast, Rubisco – Ribulose-1,5-bisphosphate carboxylase/oxygenase, Vac – Vacuole, АТP – Adenosine triphosphate, ADP – Adenosine diphosphate, NADPH – reduced form of NADP+ – Nicotinamide Adenine Dinucleotide Phosphate, Cc – Calvin cycle, Р – inorganic orthophosphate , ТP – Triose-Phosphate, UDP- – Uridine diphosphate Glucose, -6P – glucose 6-phosphate, HXK – hexokinase,  – sucrose, hexoses:  – glucose, – fructose, RFO – Raffinose Family Oligosaccharides, CInv – Cytosolic Invertase, VInv – Vacuolic Invertase, CWInv – Cell Wall Invertase, Pol – Polyols, Int – Inositol. Description of scheme is presented in the text. To simplify the comparison of the text and data presented in the figures, the continuous numbering for transporters and ferments was carried out, which is represented by numbers in circles; a similar approach was used by [19–20]

Download (578KB)
3. Fig. 2. Scheme of the transport of sugars in the cells of the roots of a plant without AMsymbiosis (based on materials presented by [17-18, 20, 47, 50, 52-54] with changes and additions). In Fig. 2: for abbreviations see explanations to Fig. 1; Sink – a root cortex cell consuming sugar (Sink cortex cell), Amylo – Amyloplast, -1P – glucose-1-phosphate, ADP- – adenosine diphosphate Glucose, AGPase – ADP-glucopyrophosphorylase, PGM – phosphoglucomutase, SS – Starch Synthase, SB – Starch Branching enzyme, SD – amylopectin cleaving enzyme (Starch Debranching enzyme), AMY – amylase, PGI – phosphoglucose isomerase, SPS – Sucrose-Phosphate Synthase, SPP – Sucrose-phosphate phosphatase. Description of scheme see the text

Download (461KB)
4. Fig. 3. Scheme of sugar transport to the roots of AM plants with arbuscules (based on materials presented by [18, 50, 52, 59] with changes and additions). In Fig. 3: for abbreviations see explanations to Fig. 1; Sink – a root-sugar cell that consumes sugar (Sink cortex cell); “Sink + AM” – a root cortex cell with AM that consumes sugar (Sink cortex cell with Arbuscular Mycorrhiza), “PM + CW” – Plasmatic Membrane and Cell Wall, PAM – Peri-Arbuscular Membrane, PAS – Peri-Arbuscular Space, “ArM + ACW” – Arbuscule Membrane and Arbuscule Cell Wall, InterH – Intercellular intraradical Hypha, ExtraH – Extraradical Hypha, FAS – Fatty Acid Synthase system, 2-MAG – 2-Monoacylglycerol, TAG – Triacyl-glycerol, Gly – Glycogen, MS – Monosaccharides. Description of transporters, see the text

Download (375KB)

Copyright (c) 2019 Yurkov A.P., Kryukov A.A., Gorbunova A.O., Afonin A.M., Kirpichnikova A.A., Dobryakova K.S., Machs E.M., Shishova M.F.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies