Молекулярно-генетические механизмы транспорта сахаров у растений в отсутствие и при развитии арбускулярной микоризы

Обложка

Цитировать

Полный текст

Аннотация

Обзор посвящен анализу молекулярных механизмов транспорта углеводов при формировании арбускулярной микоризы (АМ) — широко распространенного симбиоза наземных растений с грибами подотдела Glomeromycotina. В результате образования АМ-симбиоза растение получает от микосимбионта микроэлементы, главным образом фосфор, а гриб — продукты ассимиляции углерода. В связи с облигатным статусом АМ-грибов по отношению к растениям изучение механизмов транспорта сахаров в растения и между растением и симбионтом является методически сложной задачей. В обзоре перечислены механизмы транспорта углеводов в клетках листа, а также перемещения сахаров в клетках корня. Особое внимание уделено изменению спектра транспортеров при формировании арбускул, а также выявлению специфичных для АМ переносчиков. Предложены оригинальные обобщающие схемы. Рассматривается значение открытого в 2010 г. семейства двунаправленных энергонезависимых транспортеров — SWEET (Sugars Will Eventually be Exported Transporters), включающего специфичные для АМ унипортеры. Обобщены результаты активных исследований экспрессии генов, кодирующих транспортеры растений в клетках растений без АМ / с АМ c арбускулами / с АМ без арбускул. Приводятся данные о генах, кодирующих у грибов белки семейства моносахаридных транс портеров MST (Monosaccharide Transporters), некоторые из которых принимают участие в прямом транспорте сахаров из почвы во внекорневой мицелий АМ-грибов.

Об авторах

Андрей Павлович Юрков

ФГБНУ «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Автор, ответственный за переписку.
Email: yurkovandrey@yandex.ru
ORCID iD: 0000-0002-2231-6466
SPIN-код: 9909-4280
Scopus Author ID: 56835374200
ResearcherId: A-8513-2014
https://vk.com/andreyyurkov

канд. биол. наук, доцент, ведущий научный сотрудник, лаборатория № 4 экологии симбиотических и ассоциативных ризобактерий

Россия, 196608, г. Санкт-Петербург, Пушкин 8, ш. Подбельского, д.3

Алексей Анатольевич Крюков

ФГБНУ «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Email: rainniar@rambler.ru
SPIN-код: 4685-2723
Scopus Author ID: 57104771700

канд. биол. наук, научный сотрудник, лаборатория № 4 экологии симбио тических и ассоциативных ризобактерий

Россия, 196608, г. Санкт-Петербург, Пушкин 8, ш. Подбельского, д.3

Анастасия Олеговна Горбунова

ФГБОУ «Санкт-Петербургский государственный университет»

Email: gorbunova.anastasia93@mail.ru
SPIN-код: 3515-6450

аспирант, кафедра геоботаники и экологии растений, биологический факультет

Россия, 199034, г. Санкт-Петербург, Университетская наб., д.7/9

Алексей Михайлович Афонин

ФГБНУ «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Email: aafonin@arriam.ru
SPIN-код: 9321-2462

аспирант, лаборатория № 9

Россия, 196608, г. Санкт-Петербург, Пушкин 8, ш. Подбельского, д.3

Анастасия Алексеевна Кирпичникова

ФГБОУ «Санкт-Петербургский государственный университет»

Email: nastin1972@mail.ru
SPIN-код: 9960-9527

младший научный сотрудник, кафедра физиологии и биохимии растений, биологический факультет

Россия, 199034, г. Санкт-Петербург, Университетская наб., д.7/9

Ксения Сергеевна Добрякова

Ботанический институт им. В.Л. Комарова Российской академии наук

Email: kdobryakova@mail.ru
SPIN-код: 4197-0725
Scopus Author ID: 57200207883

канд. биол. наук, младший научный сотрудник, лаборатория молекулярной и экологической физиологии

Россия, 197376, г. Санкт-Петербург, ул. Профессора Попова, 2

Эдуард Модрисович Мачс

Ботанический институт им. В.Л. Комарова Российской академии наук

Email: emachs@binran.ru
SPIN-код: 9496-0538
Scopus Author ID: 8619012500

канд. биол. наук, старший научный сотрудник, лаборатория биосистематики и цитологии

Россия, 197376, г. Санкт-Петербург, ул. Профессора Попова, 2

Мария Федоровна Шишова

ФГБОУ «Санкт-Петербургский государственный университет»

Email: mshishova@mail.ru
ORCID iD: 0000-0003-3657-2986
SPIN-код: 7842-7611
Scopus Author ID: 6602992714

доктор биологических наук, профессор, кафедра физиологии и биохимии растений

Россия, 199034, г. Санкт-Петербург, Университетская наб., д.7/9

Список литературы

  1. Spatafora JW, Chang Y, Benny GL, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2017;108(5):1028-46. https://doi.org/10.doi: 10.3852/16-042.
  2. Van der Heijden MGA, Boller T, Wiemken A, San ders IR. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology. 1998;79:2082-2091. https://doi.org/10.1890/0012-9658(1998)079[2082: DAMFSA]2.0.CO;2.
  3. Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge; 2008. 787 p.
  4. Pyrozynski KA, Malloch DW. The origin of land plants: a matter of mycotrophism. Biosystems. 1975;6(3),153-164.
  5. Beilby JP, Kidby DK. Biochemistry of ungerminated and germinated spores of the vesicular-arbuscular mycorrhizal fungus, Glomus caledonius: changes in neutral and polar lipids. J Lipid Res. 1980;21(6):739-750.
  6. Luginbuehl LH, Oldroyd GED. Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Curr Biol. 2017;27(17): R952-R963. https://doi.org/10.1016/j.cub.2017.06.042.
  7. Fitter A. Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experientia. 1991;47(4):350-355. https://doi.org/10.1007/BF01972076.
  8. Li H, Smith FA, Dickson S, et al. Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain? New Phytol. 2008;178:852-862. https://doi.org/10.1111/j.1469-8137.2008.02410.x.
  9. Büchel DE, Gronenborn B, Müller-Hill B. Sequence of the lactose permease gene. Nature. 1980;283:541-5. https://doi.org/10.1038/283541a0.
  10. Mueckler M, Caruso C, Baldwin SA, Panico M. Sequence and structure of a human glucose transporter. Science. 1985;229(4717):941-945. https://doi.org/10.1126/science.3839598.
  11. Hediger MA, Coady MJ, Ikeda TS, Wright EM. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature. 1987;330:379-381. https://doi.org/10.1038/330379a0.
  12. Celenza JL, Marshall-Carlson L, Carlson M. The yeast snf3 gene encodes a glucose transporter homologous to the mammalian protein. PNAS. 1988;85:2130-2134. https://doi.org/10.1073/pnas.85.7.2130.
  13. Sauer N, Tanner W. The hexose carrier from Chlorella. cDNA cloning of a eucaryotic H+-cotransporter. FEBS Lett. 1989;259(1):43-46. https://doi.org/10.1016/0014-5793(89)81489-9.
  14. Sauer N, Friedlander K, Graml-Wicke U. Primary structure, genomic organization and heterologous expression of a glucose transporter from Arabidopsis thaliana. EMBO J. 1990;9(10):3045-3050. https://doi.org/10.1002/j.1460-2075.1990.tb07500.x.
  15. Lewis DA, Bisson LF. The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol Cell Biol. 1991;11(7):3804-13. https://doi.org/10.1128/MCB.11.7.3804.
  16. Riesmeier JW, Willmitzer L, Frommer WB. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 1992;11(13):4705-4713. https://doi.org/10.1002/j.1460-2075.1992.tb05575.x.
  17. Doidy J, Grace E, Kühn C, et al. Sugar transporters in plants and in their interactions with fungi. Trends in Plant Science. 2012a;17(7):413-422. https://doi.org/ 10.16/j.tplants.2012.03.009.
  18. Lemoine R, La Camera S, Atanassova R, et al. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science. 2013;4:272.
  19. Ludewig F, Flügge UI. Role of metabolite transporters in source-sink carbon allocation. Front Plant Sci. 2013;4:231. https://doi.org/10.3389/fpls.2013.00231.
  20. Wei X, Liu F, Chen C, et al. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars. Front Plant Sci. 2014;5:569. https://doi.org/10.3389/fpls.2014.00569.
  21. Wormit A, Trentmann O, Feifer I, et al. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell. 2006;18:3476-90. https://doi.org/10.1105/tpc.106.047290.
  22. Chen LQ, Hou BH, Lalonde S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010;468(7323):527-532. https://doi.org/10.1038/nature09606.
  23. Jung B, Ludewig F, Schulz A, et al. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. Nature Plants 1. 2015;14001. https://doi.org/10.1038/nplants.2014.1.
  24. Fliege R, Flugge UI, Werdan K, Heldt HW. Specific transport of inorganic phosphate, 3-phosphoglycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim Biophys Acta. 1978;502(2):232-247. https://doi.org/10.1016/0005-2728(78)90045-2.
  25. Flügge UI, Fischer K, Gross A, et al. The triose phosphate-3-phosphoglycerate-phosphate transloca tor from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J. 1989;8(1):39-46. https://doi.org/10.1002/ j.1460-2075.1989.tb03346.x.
  26. Weber A, Servaites JC, Geiger DR, et al. Identification, purification, and molecular cloning of a putative plastidic glucose translocator. Plant Cell. 2000;12(5):787-802. https://doi.org/10.1105/tpc.12.5.787.
  27. Büttner M. The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett. 2007;581(12):2318-24. https://doi.org/10.1016/j.febslet.2007.03.016.
  28. Niittylä T, Messerli G, Trevisan M, et al. A previously unknown maltose transporter essential for starch degradation in leaves. Science. 2004;303(5654):87-89. https://doi.org/10.1126/science.1091811.
  29. Wang J, Wang X, Geng S, et al. Genome-wide identification of hexokinase gene family in Brassica napus: structure, phylogenetic analysis, expression, and functional characterization. Planta. 2018;248:171-182. https://doi.org/10.1007/s00425-018-2888-8.
  30. Moore B, Zhou L, Rolland F, et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science. 2003;300:332-336. https://doi.org/10.1126/science.1080585.
  31. Van Dingenen J, Antoniou C, Filippou P, et al. Strobilurins as growth-promoting compounds: how stroby regulates Arabidopsis leaf growth. Plant Cell and Environment. 2017;40(9):1748-60. https://doi.org/10.1111/pce.12980.
  32. Hohnjec N, Becker JD, Puhler A, et al. Genomic organization and expression properties of the MtSucS1 gene, which encodes a nodule enhanced sucrose synthase in the model legume Medicago truncatula. Mol Gen Genet. 1999;261:514-522. https://doi.org/10.1007/s004380050995.
  33. Baud S, Vaultier MN, Rochat C. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot. 2004;55(396):397-409. https://doi.org/10.1093/jxb/erh047.
  34. Hirose T, Scofield GN, Terao T. An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Sci. 2008;174(5):534-543. https://doi.org/10.1016/j.plantsci.2008.02.009.
  35. Zhang DQ, Xu BH, Yang XH, et al. The sucrose synthase gene family in Populus: structure, expression, and evolution. Tree Genet Genomes. 2011;7(3):443-56. https://doi.org/10.1007/s11295-010-0346-2.
  36. Xiao X, Tang C, Fang Y, et al. Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers. FEBS Journal. 2013;281(1):291-305. https://doi.org/10.1111/febs.12595.
  37. Sauer N. Molecular physiology of higher plant sucrose transporters. FEBS Lett. 2007;581:2309-2317. https://doi.org/10.1016/j.febslet.2007.03.048.
  38. Kühn C, Grof CP. Sucrose transporters of higher plants. Curr Opin Plant Biol. 2010;13(3):288-298. https://doi.org/10.1016/j.pbi.2010.02.001.
  39. Payyavula RS, Tay KH, Tsai CJ, Harding SA. The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant J. 2011;65(5):757-770. https://doi.org/10.1111/j.1365-313X.2010.04463.x.
  40. Zhou Y, Qu H, Dibley KE, et al. A suite of sucrose transporters expressed in coats of developing legume seeds includes novel pH-independent facilitators. Plant J. 2007;49(4):750-764. https://doi.org/10.1111/j.1365-313X.2006.03000.x.
  41. Chardon F, Bedu M, Calenge F, et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr Biol. 2013;23(8):697-702. https://doi.org/10.1016/j.cub.2013.03.021.
  42. Aluri S, Büttner M. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proc Natl Acad Sci USA. 2007;104(7):2537-42. https://doi.org/10.1073/pnas.0610278104.
  43. Taji Т, Ohsumi С, Iuchi S, et al. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 2002;29:417-426. https://doi.org/10.1046/j.0960-7412.2001.01227.x.
  44. Klepek YS, Volke M, Konrad KR, et al. Arabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTERS1 and 2: fructose and xylitol/H+ symporters in pollen and young xylem cells. J Exp Bot. 2010;61(2):537-550. https://doi.org/10.1093/jxb/erp322.
  45. Meyer S, Melzer M, Truernit E, et al. AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. Plant J. 2000;24(6):869-882. https://doi.org/10.1046/j.1365-313x.2000.00934.x.
  46. Halford NG, Curtis TY, Muttucumaru N, et al. Sugars in crop plants. Ann Appl Biol. 2011;158(1):1-25. https://doi.org/10.1111/j.1744-7348.2010.00443.x.
  47. Wang W, Zhou H, Ma B, et al. Divergent evolutionary pattern of sugar transporter genes is associated with the difference in sugar accumulation between Grasses and Eudicots. Sci Rep. 2016;6:29153. https://doi.org/10.1038/srep29153.
  48. Bago B, Pfeffer PE, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 2000;124:949-957. https://doi.org/10.1104/pp.124.3.949.
  49. Doidy J, van Tuinen D, Lamotte O, et al. The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi. Molecular Plant. 2012b;5(6):1346-1358. https://doi.org/10.1093/mp/sss079.
  50. Hennion N, Durand M, Vriet C, et al. Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiol Plant. 2019;165(1):44-57. https://doi.org/10.1111/ppl.12751.
  51. Milne RJ, Grof CP, Patrick JW. Mechanisms of phloem unloading: shaped by cellular pathways, their conductances and sink function. Curr Opin Plant Biol. 2018;43:8-15. https://doi.org/10.1016/j.pbi.2017.11.003.
  52. Wang W, Shi J, Xie Q, et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant. 2017;10(9):1147-1158. https://doi.org/10.1016/j.molp.2017.07.012.
  53. Weber AP, Linka N. Connecting the plastid: transporters of the plastid envelope and their role in linking plastidial with cytosolic metabolism. Annu Rev Plant Biol. 2011;62:53-77. https://doi.org/10.1146/annurev-arplant-042110-103903.
  54. Noronha H, Conde C, Delrot S, Gerós H. Identification and functional characterization of grapevine transporters that mediate glucose-6-phosphate uptake into plastids. Planta. 2015;242(4):909-920. https://doi.org/10.1007/s00425-015-2329-x.
  55. Denyer K, Dunlap F, Thorbjornsen T, et al. The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol. 1996;112(2):779-85. https://doi.org/10.1104/pp.112.2.779.
  56. Noronha H, Silva A, Dai Z, et al. A molecular perspective on starch metabolism in woody tissues. Planta. 2018;248(3):559-568. https://doi.org/10.1007/s00425-018-2954-2.
  57. Carpaneto A, Geiger D, Bamberg E, et al. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. J Biol Chem. 2005;280(22):21437-21443. https://doi.org/10.1074/jbc.M501785200.
  58. Fillion L, Ageorges A, Picaud S, et al. Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Plant Physiol. 1999;120(4):1083-1094. https://doi.org/10.1104/pp.120.4.1083.
  59. Ait Lahmidi N, Courty P-E, Brulé D, et al. Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner. Plant Physiol Biochem. 2016;107:354-363. https://doi.org/10.1016/j.plaphy.2016.06.023.
  60. Gaude N, Bortfeld S, Duensing N, et al. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J. 2012;69(3):510-528. https://doi.org/10.1111/j.1365-313X.2011.04810.x.
  61. Manck-Gotzenberger J, Requena N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci. 2016;7:487. https://doi.org/10.3389/fpls.2016.00487.
  62. Helber N, Wippel K, Sauer N, et al. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is сrucial for the symbiotic relationship with plants. The Plant Cell. 2011;23(10): 3812-23. https://doi.org/10.1105/tpc.111.089813.
  63. Garcia K, Doidy J, Zimmermann SD, et al. Take a trip through the plant and fungal transportome of Mycorrhiza. Trends Plant Sci. 2016;21(11):937-950. https://doi.org/10.1016/j.tplants.2016.07.010.
  64. Schüssler A, Martin H, Cohen D, et al. Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature. 2006;444:933-936. https://doi.org/10.1038/nature05364.
  65. Bitterlich M, Krügel U, Boldt-Burisch K, et al. The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation. Plant J. 2014;78(5):877-889. https://doi.org/10.1111/tpj.12515.
  66. Gutjahr C, Radovanovic D, Geoffroy J, et al. The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J. 2012;69(5):906-920. https://doi.org/10.1111/j.1365-313X.2011.04842.x.
  67. Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB. 2015;67(7):461-471. https://doi.org/10.1002/iub.1394.
  68. Nielsen KL, Bouma TJ, Lynch JP, Eissenstat DM. Effects of phosphorus availability and vesicular-arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris). New Phytol. 1998;139:647-656. https://doi.org/10.1046/j.1469-8137.1998.00242.x.
  69. Pfeffer PE, Douds DD, Becard G, Shachar-Hill Y. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol. 1999;120(2):587-598. https://doi.org/10.1104/pp.120.2.587.
  70. Smith SE, Smith FA. Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytologist. 1990;114(1):1-38. https://doi.org/10.1111/j.1469-8137.1990.tb00370.x.
  71. Smith SE, Dickson S, Smith FA. Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Australian J Plant Physiol. 2001;28(7):683-694. https://doi.org/10.1071/PP01033.
  72. Pumplin N, Harrison MJ. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physio logy. 2009;151(2):809-819. https://doi.org/10.1104/pp.109.141879.
  73. Veiga RS, Faccio A, Genre A, et al. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ. 2013;36(11):1926-1937. https://doi.org/10.1111/pce.12102.
  74. Yurkov AP, Veselova SV, Jacobi LM, et al. The effect of inoculation with arbuscular mycorrhizal fungus Rhizophagus irregularis on cytokinin content in highly mycotrophic Medicago lupulina line under low phosphorus level in soil. Plant Soil Environ. 2017;63(11):519-24. https://doi.org/10.17221/617/2017-PSE.
  75. Aldape MJ, Elmer AM, Chao WS, Grimes HD. Identification and characterization of a sucrose transporter isolated from the developing cotyledons of soybean. Archives Biochem Biophys. 2003;409(2):243-250. https://doi.org/10.1016/S0003-9861(02)00631-8.
  76. Weber H, Borisjuk L, Heim U, et al. A role for sugar transporters during seed development: molecular cha racterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell. 1997;9:895-908. https://doi.org/10.1105/tpc.9.6.895.
  77. Feuerstein A, Niedermeier M, Bauer K, et al. Expression of the AtSUC1 gene in the female gametophyte, and ecotype-specific expression differences in male reproductive organs. Plant Biol (Stuttg). 2010;12 Suppl 1:105-114. https://doi.org/10.1111/j.1438-8677.2010.00389.x.
  78. Kryvoruchko IS, Sinharoy S, Torres-Jerez I, et al. MtSWEET11, a nodule-specific sucrose transporter of Me dicago truncatula. Plant Physiol. 2016;171(1): 554-65. https://doi.org/10.1104/pp.15.01910.
  79. Reinders A, Sivitz AB, Starker CG, et al. Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicas. Plant Mol Biol. 2008;68(3):289-299. https://doi.org/10.1007/s11103-008-9370-0.
  80. Truernit E, Schmid J, Epple P, et al. The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. Plant Cell. 1996;8:2169-2182. https://doi.org/10.1105/tpc.8.12.2169.
  81. Nørholm MHH, Nour-Eldin HH, Brodersen P, et al. Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death. FEBS Lett. 2006;580(9):2381-2387. https://doi.org/10.1016/j.febslet.2006.03.064.
  82. Poschet G, Hannich B, Büttner M. Identification and characterization of AtSTP14, a novel galactose transporter from Arabidopsis. Plant Cell Physiol. 2010;51:1571-1580. https://doi.org/10.1093/pcp/pcq100.
  83. Li H, Li X, Xuan Y, et al. Genome wide identification and expression profiling of SWEET genes family reveals its role during Plasmodiophora brassicae-induced formation of clubroot in Brassica rapa. Front Plant Sci. 2018;9:207. https://doi.org/10.3389/fpls.2018.00207.
  84. Lin IW, Sosso D, Chen LQ, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET 9. Nature. 2014;508:546-549. https://doi.org/10.1038/nature13082.
  85. Liu Q, Yuan M, Zhou Y, et al. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ. 2011;34:1958-1969. https://doi.org/10.1111/j.1365-3040.2011.02391.x.
  86. Chen LQ, Cheung LS, Feng L, et al. Transport of sugars. Annu Rev Biochem. 2015;84:865-894. https://doi.org/10.1146/annurev-biochem-060614-033904.
  87. Yuan M, Wang S. Rice MtN3/saliva/SWEET family genes and their homologues in cellular organisms. Mol Plant. 2013;6(3):665-674. https://doi.org/10.1093/mp/sst035.
  88. Patil G, Valliyodan B, Deshmukh R, et al. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics. 2015;16:520. https://doi.org/10.1186/s12864-015-1730-y.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Общая схема транспорта сахаров из надземных частей растений (по [17–20], с изм. и доп.). ПД — плазмодесма, Мал — мальтоза, Кра — крахмал, Хлп — хлоропласт, Rubisco — рибулозобисфосфаткарбоксилаза/оксигеназа (Ribulose bisphosphate carboxylase/oxygenase), Вак — вакуоль, АТФ — аденозинтрифосфат, АДФ — аденозиндифосфат, НАДФН — восстановленная форма никотинамидадениндинуклеотидфосфата, ЦК — цикл Кальвина, Ф — неорганический ортофосфат, ТФ — триозофосфат, УДФ- — уридиндифосфатглюкоза, -6Ф — глюкозо-6-фосфат, HXK – гексокиназа, — сахароза, гексозы: — глюкоза, — фруктоза, ОГР — олигосахариды группы раффиноз (Raffinose Family Oligosaccharides), CInv — цитоплазматическая инвертаза (Cytosolic Invertase), VInv — вакуолярная инвертаза (Vacuolic Invertase), CWInv — инвертаза клеточной стенки (Cell Wall Invertase), Пол — полиолы, например, сорбитол и маннитол, Инт — инозитол. Для упрощения сопоставления текста и данных, представленных на рисунках, проведена сквозная нумерация переносчиков и ферментов, которая представлена цифрами в кружках; аналогичный подход использован в статьях [19, 20]

Скачать (469KB)
3. Рис. 2. Схема транспорта сахаров в клетках корней растения без АМ-симбиоза (по [17, 18, 20, 47, 50, 52–54], с изм. и доп.). Амило — амилопласт (Amyloplast), -1P — глюкозо-1-фосфат, ADP- — аденозиндифосфатглюкоза (Adenosine diphosphate Glucose), AGPase — aденозиндифосфатглюкопирофосфорилаза (ADP-Gluco pyrophosphorylase), PGM — фосфоглюкомутаза (Phosphoglucomutase), SS — крахмал-синтаза (Starch Synthase), SB — фермент ветвления крахмала (Starch Branching enzyme), SD — фермент, расщепляющий амилопектин (Starch Debranching enzyme), AMY — амилазы (Amylases), PGI — фосфоглюкозоизомераза (Phosphoglucose Isomerase), SPS — сахарозофосфатсинтаза (Sucrose-phosphate Synthase), SPP — сахарозофосфатфосфатаза (Sucrose-phosphate Phosphatase). Остальные сокращения см. в подписи к рис. 1

Скачать (402KB)
4. Рис. 3. Схема транспорта сахаров в корни АМ-растения с арбускулами (по [18, 50, 52, 59], с изм. и доп.). ПМ + КС — плазмалемма и клеточная стенка клетки коры корня, ПAM — периарбускулярная мембрана, ПАП — периарбускулярное пространство, AрM + КСА — мембрана арбускулы и клеточная стенка арбускулы, ВнутрГ — межклеточная внутрикорневая гифа АМ-гриба, ВнекГ — внекорневая гифа АМ-гриба, СЖК — синтазная система жирных кислот, 2-MAG — 2-моноацилглицерол (2-Monoacylglycerol), ТАГ — триацилглицерол, Гли — гликоген, MС — моносахариды. Остальные сокращения см. в подписи к рис. 1

Скачать (358KB)

© Юрков А.П., Крюков А.А., Горбунова А.О., Афонин А.М., Кирпичникова А.А., Добрякова К.С., Мачс Э.М., Шишова М.Ф., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах