Specific features of the biochemical composition of life forms of black medic (Medicago lupulina L.)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Black medic is used as a pasture, cover, siderate, anti-erosion culture for fixing embankments along roads, on mining dumps and for phytoremediation. Mono-, bi- and polycarpic forms are distinguished within the species, differing in the number of fruitions during the plant life cycle. The presence of polymorphism of morphological features and features of ontogenesis suggests the presence of differences in biochemical parameters in the selected groups.

AIM: The aim of the study was to study the polymorphism of biochemical parameters of various life forms of black medic.

MATERIALS AND METHODS: The material for the study was 20 accessions of black medic of various origins from groups of mono-, bi- and polycarpic plants of the VIR collection. For the study, a freshly harvested green mass of plants was used. The assessment was carried out according to the following biochemical parameters: the content of dry matter, protein, sugars, ascorbic acid, total acidity, chlorophylls, carotenoids, carotenes, β-carotene, anthocyanins. Statistical processing of the results included calculation of the main parameters of variation, analysis of variance and discriminant analysis.

RESULTS: The nutritional value of black medic was characterized by the content of crude protein and sugars. The range of protein variability ranged from 11,94 to 19,69 mg / 100 g of raw matter, sugars — from 0,44 to 2,67%. Differences in the sugar content of plants of different groups were revealed. The content of ascorbic acid was the highest in five varieties from the polycarpic plant group presented in the study in comparison with wild-growing accessions and the monocarpic Bereginya variety. Monocarpics are distinguished by the content of anthocyanin (19,5 ± 1,41 mg / 100 g); no significant differences were found in the content of other pigments.

CONCLUSIONS: The results of in-depth biochemical analysis of accessions from the collection of plant genetic resources demonstrate the high variability of biologically active substances in the green mass of plants and will significantly improve the choice of the initial material for selection for forage usage.

About the authors

Natalia Yu. Malysheva

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: nataliem1@yandex.ru
ORCID iD: 0000-0002-5688-6694
Scopus Author ID: 57215428573

Cand. Sci. (Agricutural), Senior Research Associate, Department of Grain Legumes

Russian Federation, Saint Petersburg

Tatiana V. Shelenga

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: tatianashelenga@yandex.ru
ORCID iD: 0000-0003-3992-5353
SPIN-code: 3654-5416
Scopus Author ID: 37069721500

Cand. Sci. (Biol.), Leading Research Associate, Department of Biochemistry and Molecular Biology

Russian Federation, Saint Petersburg

Alla E. Solovyeva

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: alsol64@yandex.ru
ORCID iD: 0000-0002-6201-4294
SPIN-code: 1754-4144
Scopus Author ID: 14013677500

Cand. Sci. (Biol.), Senior Research Associate, Department of Biochemistry and Molecular Biology

Russian Federation, Saint Petersburg

Leonid L. Malyshev

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Author for correspondence.
Email: l.malyshev@vir.nw.ru
ORCID iD: 0000-0002-8595-1336
SPIN-code: 9697-2351
Scopus Author ID: 57208387487

Cand. Sci. (Agricutural), Leading Research Associate, group of GR perennial fodder cereals of the department of GR oats, rye, barley

Russian Federation, Saint Petersburg

References

  1. Small E. Alfalfa and relatives: evolution and classification of Medicago. Ottawa: NRC Research Press, 2011. 850 p. doi: 10.1079/9781845937508.0000
  2. Lesins KA, Lesins I. Genus Medicago (Leguminosae). A taxogenetic study. Hague, Boston, London: Dr. W. Junk bv Publishers, 1979. 240 p. doi: 10.1007/978-94-009-9634-2
  3. Sims JR, Koala S, Ditterline RL, Wiesner LE. Registration of ‘George’ Black Medic. Crop Sci. 1985;25(4):709–710. doi: 10.2135/CROPSCI1985.0011183X002500040041X.
  4. Wilson LC. Characteristics of black medic (Medicago lupulina L.) seed dormancy loss in Western Canada. Department of Plant Science University of Manitoba Winnipeg: MB, 2005. 119 p.
  5. Entz MH, Thiessen Martens JR, May W, Lafond GP. Black medic (Medicago lupulina) germplasm screening for use as a self-regenerating cover crop on the Canadian Prairies. Can J Plant Sci. 2007;87(4):873–878. doi: 10.4141/cjps06053
  6. Amer N, Al Chami Z, Al Bitar L, et al. Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb and Zn. Int J Phytoremediation. 2013;15(5):498–512. doi: 10.1080/15226514.2012.716102.
  7. Butkute B, Padarauskas A, Cesevičiene J, et al. Phytochemical composition of temperate perennial legumes. Crop Pasture Sci. 2018;69(10):1020–1030. doi: 10.1071/CP18206
  8. Matanzas·N, Aff·E, Díaz·TE, Gallego JR. Phytoremediation potential of native herbaceous plant species growing on a paradigmatic brownfeld site. Water, Air, and Soil Pollution. 2021:232:290. doi: 10.1007/s11270-021-05234-9
  9. Grossgeim AA. Lyutserna — Medicago L. Komarova VL, Shishkin BK, editors. Flora SSSR. Vol. 11. Moscow, Leningrad: AN SSSR, 1945. P. 129–176. (In Russ.)
  10. Sinskaya EN. Lyutserna — Medicago L. Kul’turnaya flora SSSR. Mnogoletnie bobovye travy. Vol. 13. Leningrad: Sel’khozgiz, 1950. P. 7–217. (In Russ.)
  11. Medvedev PF. K voprosu o zhiznennoi forme Medicago lupulina L. Botanicheskii zhurnal. 1959;44(3):1496–1498. (In Russ.)
  12. Vitkus AA. Biologicheskie osobennosti i khimicheskii sostav lyutserny khmelevidnoi mestnoi populyatsii v Yugo-Vostochnoi Litve (Osobennosti rosta i razvitiya odno- i dvuletnikh rastenii). Trudy Akademii nauk Litovskoi SSR. Seriya V. 1987;(4):17–23. (In Russ.)
  13. Stepanova GV. Economic importance of wild black medic (Medicago lupulina L.) of different ecological and geographic origin. Proceedings on Applied Botany, Genetics and Breeding. 2009;166: 249–255. (In Russ.)
  14. Malysheva NYu. Biological diversity of black medic (Medicago lupulina L.). Vavilovia. 2021;4(4):28–37. (In Russ.) doi: 10.30901/265838602021428-37
  15. Stupakova NS, Tsutsupa TA. Biomorphs of Medicago lupulina L. Formation in the process of the ontogeny. Uchenye zapiski Orlovskogo gosudarstvennogo universiteta. Seriya: estestvennye, tekhnicheskie i meditsinskie nauki. 2012;(6–1):181–188. (In Russ.)
  16. Stepanova GV, Vorsheva AV. Formation of bicarpic populations of black medic. Kosolapov VM, Shpakov AS, Kutuzova AA, et al, editors. Mnogofunktsional’noe adaptivnoe kormoproizvodstvo. Sbornik nauchnykh trudov. Lobnya: Federal Williams Research Center of Forage Production and Agroecology, 2021. P. 9–20. (In Russ.) doi: 10.33814/MAK-2021-25-73-9-20
  17. Pavlov NV. Rastitel’noe syr’e Kazakhstana (Rasteniya: ikh veshchestva i ispol’zovanie). Moscow, Leningrad: Izdatel’stvo AN SSSR, 1947. 552 p. (In Russ.)
  18. Vitkus AA, Ruzgene RYu, Aidzhyulene NV. Biologicheskie osobennosti i khimicheskii sostav lyutserny khmelevidnoi mestnoi populyatsii v Yugo-Vostochnoi Litve (Askorbinovaya kislota, karotin, tiamin, riboflavin, piridoksin, pantotenovaya i nikotinovaya kislota). Trudy Akademii nauk Litovskoi SSR. Seriya V. 1984;(2):18–23. (In Russ.)
  19. Ermakov AI, Arasimovich VV, Yarosh NP, et al editors. Metody biokhimicheskogo issledovaniya rastenii. Leningrad: Agropromizdat, 1987. (In Russ.)
  20. Wu X, Beecher GR, Holden JM, et al. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem. 2006;54(11):4069–4075. doi: 10.1021/jf060300l
  21. Karayilanli E, Ayhan V. Investigation of feed value of alfalfa (Medicago sativa L.) harvested at different maturity stages. Legume Res. 2016;(39):237–247 doi: 10.18805/lr.v0iOF.9292.
  22. Pyatninskii DV. Urozhainost’ senokosno-pastbishchnykh sortov lyutserny izmenchivoi v odnovidovykh posevakh i travosmesyakh [dissertation]. 2018. 242 p. (In Russ.)
  23. Kosolapova VG, Mussie SA. Nutritional value of alfalfa genotypes at various growth stages. Fodder Journal. 2020;(10):17–24. (In Russ.) doi: 10.25685/KRM.2020.49.33.001
  24. Ignatiev SA, Regidin AA, Kravchenko NS, Goryunov KN. Estimation of the parameters of the ecological adaptability of the alfalfa samples according to the traits ‘green mass productivity’ and ‘raw protein percentage’. Grain Economy of Russia. 2021;(3):34–40. (In Russ.) doi: 10.31367/2079-8725-2021-75-3-34-40
  25. Chupakhina GN. Sistema askorbinovoi kisloty rastenii: monografiya. Kaliningrad: Izdatel’stvo Kaliningradskogo universiteta, 1997. 120 p. (In Russ.)
  26. Grigoryeva AA, Mironova GE. Content of Biologically Active Substances in the Forage Grasses of Central Yakutia Rangelan. Vestnik of North-Eastern Federal University. 2015;12(1):25–30. (In Russ.)
  27. Ptashats OV, Luchanok LN, Sizhuk LV. The content of structural and non-structural carbohydrates in plants of alfalfa, cultivated on agro-peat soils. Land Reclamation. 2020;(2):34–40. (In Russ.)
  28. Soldatova VV, Iyldyrym EA, Il’ina LA, et al. Mozhno li silosovat’ lyutsernu? Sel’skokhozyaistvennye vesti. 2016;(1):48–51. (In Russ.)
  29. Pobednov YuA, Mamaev AA, Shirokorad MS, Osipyan BA. Biological sources of sugar, ammonia and butyric acid while wilting and ensiling alfalfa. Problems of productive animal biology. 2020;(1):79–90. (In Russ.) doi: 10.25687/1996-6733.prodanimbiol.2020.1.79-90
  30. Nichiporovich AA. Fotosintez i teoriya polucheniya vysokikh urozhaev. Moscow: Izd-vo AN SSSR, 1956. 96 p. (In Russ.)
  31. Osipova VV. Pigmenty fotosinteticheskogo apparata sortov lyutserny (Medicago falcatа L., Medicago variа Martyn). Proceeding of the international science and practice conference: “Perspektivy razvitiya sovremennykh sel’skokhozyaistvennykh nauk”. Voronezh, 2014. P. 13–16. (In Russ.)
  32. Gruner LA, Kuleshova OV. Number and ratio of photosynthetic pigments in blackberry leaves. Contemporary horticulture. 2018;(3):74–80. (In Russ.) doi: 10.24411/2312-6701-2018-10311
  33. Babova O, Occhipinti A, Capuzzo A, Maffei ME. Extraction of bilberry (Vaccinium myrtillus) antioxidants using supercritical/subcritical CO2 and ethanol as co-solvent. J Supercrit Fluids. 2016;107: 358–363. doi: 10.1016/J.SUPFLU.2015.09.029
  34. Kong J-M, Chia L-S, Goh N-K, et al. Analysis and biological activities of anthocyanins. Phytochemistry. 2003;64(5):923–933. doi: 10.1016/S0031-9422(03)00438-2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Distribution of hops alfalfa specimens from the VIR collection in the space of canonical axes

Download (156KB)

Copyright (c) 2022 Malysheva N.Y., Shelenga T.V., Solovyeva A.E., Malyshev L.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies