The role of universal regulators of plant growth and development the DELLA proteins in the control of symbiosis

Cover Page

Cite item

Abstract

The regulators of the gibberellin response, the DELLA proteins, are universal participants of signaling pathways that coordinate the processes of plant growth and development. This regulation is provided by the integration of external effect, as well as internal signals, such as a level of phytohormones and secondary messengers. Since DELLA proteins are extremely sensitive to increasing or decreasing of the gibberellic acid (GA) endogenous level, their direct interaction with transcription factors modulates the activity of the latter, and, consequently, the level of expression of target genes in response to external signals causing changes in the level of GA. However, the molecular mechanisms of the effect of DELLA proteins on the development of symbiosis remain poorly understood. The review analyzes classical and modern data on the functioning of DELLA proteins in plants.

About the authors

Aleksandra V. Dolgikh

All-Russia Research Institute for Agricultural Microbiology

Email: sqshadol@gmail.com
ORCID iD: 0000-0003-1845-9701

Student, Laboratory of Molecular and Cellular Biology

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Elena A. Dolgikh

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: dol2helen@yahoo.com
ORCID iD: 0000-0002-5375-0943
SPIN-code: 4453-2060
Scopus Author ID: 6603496335
ResearcherId: G-6363-2017

Doctor of Science, Group Leader, Laboratory of Molecular and Cellular Biology

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

References

  1. Xue L, Cui H, Buer B, et al. Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Phy siol. 2015;167(3):854-871. https://doi.org/10.1104/pp.114.255430.
  2. Hirsch S, Oldroyd GED. GRAS-domain transcription factors that regulate plant development. Plant Signaling & Behavior. 2014;4(8):698-700. https://doi.org/10.4161/psb.4.8.9176.
  3. Hirsch S, Oldroyd GED. GRAS-domain transcription factors that regulate plant development. Plant Signaling & Behavior. 2014;4(8):698-700. https://doi.org/10.4161/psb.4.8.9176.
  4. Vera-Sirera F, Gomez MD, Perez-Amador MA. DELLA proteins, a group of GRAS transcription regulators that mediate gibberellin signaling. In: Plant Transcription Factors. Elsevier; 2016. P. 313-328. https://doi.org/10.1016/B978-0-12-800854-6.00020-8.
  5. Daviere JM, Achard P. Gibberellin signaling in plants. Development. 2013;140(6):1147-1151. https://doi.org/10.1242/dev.087650.
  6. Briones-Moreno A, Hernandez-Garcia J, Vargas-Chavez C, et al. Evolutionary analysis of DELLA-associated transcriptional networks. Front Plant Sci. 2017;8:626. https://doi.org/10.3389/fpls.2017.00626.
  7. Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol. 2011;21(9):R338-345. https://doi.org/10.1016/j.cub.2011.02.036.
  8. Dill A, Thomas SG, Hu J, et al. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell. 2004;16(6):1392-1405. https://doi.org/10.1105/tpc.020958.
  9. Hirano K, Kouketu E, Katoh H, et al. The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J. 2012;71(3):443-453. https://doi.org/10.1111/j.1365-313X.2012.05000.x.
  10. Fleck B, Harberd NP. Evidence that the Arabidopsis nuclear gibberellin signalling protein GAI is not destabilised by gibberellin. The Plant Journal. 2002;32(6):935-947. https://doi.org/10.1046/j.1365-313X.2002.01478.x.
  11. Wen CK. Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell. 2002;14(1):87-100. https://doi.org/10.1105/tpc.010325.
  12. Hedden P, Thomas SG. Gibberellin biosynthesis and its regulation. Biochem J. 2012;444(1):11-25. https://doi.org/10.1042/BJ20120245.
  13. Livne S, Lor VS, Nir I, et al. Uncovering DELLA-independent gibberellin responses by characterizing new tomato procera mutants. Plant Cell. 2015;27(6):1579-94. https://doi.org/10.1105/tpc.114.132795.
  14. Gubler F, Chandler PM, White RG, et al. Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiol. 2002;129(1): 191-200. https://doi.org/10.1104/pp.010918.
  15. Floss DS, Levy JG, Levesque-Tremblay V, et al. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA. 2013;110(51):E5025-5034. https://doi.org/10.1073/pnas.1308973110.
  16. Weston DE, Elliott RC, Lester DR, et al. The Pea DELLA proteins LA and CRY are important regulators of gibberellin synthesis and root growth. Plant Phy siol. 2008;147(1):199-205. https://doi.org/10.1104/pp.108.115808.
  17. Zhang ZL, Ogawa M, Fleet CM, et al. Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proc Natl Acad Sci U S A. 2011;108(5):2160-2165. https://doi.org/10.1073/pnas.1012232108.
  18. Zentella R, Zhang ZL, Park M, et al. Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell. 2007;19(10):3037-3057. https://doi.org/10.1105/tpc.107.054999.
  19. Hirano K, Nakajima M, Asano K, et al. The GID1-mediated gibberellin perception mechanism is conserved in the Lycophyte Selaginella moellendorffii but not in the Bryophyte Physcomitrella patens. Plant Cell. 2007;19(10):3058-3079. https://doi.org/10.1105/tpc.107.051524.
  20. Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP. Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr Biol. 2007;17(14):1225-1230. https://doi.org/10.1016/j.cub.2007.06.037.
  21. Vandenbussche F, Fierro AC, Wiedemann G, et al. Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol. 2007;7:65. https://doi.org/10.1186/1471-2229-7-65.
  22. Gallego-Bartolome J, Minguet EG, Marin JA, et al. Transcriptional diversification and functional conservation between DELLA proteins in Arabidopsis. Mol Biol Evol. 2010;27(6):1247-1256. https://doi.org/10.1093/molbev/msq012.
  23. Frigerio M, Alabadi D, Perez-Gomez J, et al. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol. 2006;142(2):553-563. https://doi.org/10.1104/pp.106.084871.
  24. Plant Hormones: Physiology, Biochemistry and Molecular Biology. Ed. by P.J. Davies. Springer; 2013.
  25. Brian PW, Hemming HG. Complementary action of Gibberellic acid and auxins in pea internode extension. Ann Bot. 1958;22(1):1-17. https://doi.org/10.1093/oxfordjournals.aob.a083592.
  26. Fu X, Harberd NP. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature. 2003;421(6924):740-743. https://doi.org/10.1038/nature01387.
  27. Achard P, Vriezen WH, Van Der Straeten D, Harberd NP. Ethylene regulates arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell. 2003;15(12):2816-2825. https://doi.org/10.1105/tpc.015685.
  28. Hua J, Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell. 1998;94(2):261-271. https://doi.org/10.1016/s0092-8674(00)81425-7.
  29. Gallego-Bartolome J, Minguet EG, Marin JA, et al. Transcriptional diversification and functional conservation between DELLA proteins in Arabidopsis. Mol Biol Evol. 2010;27(6):1247-1256. https://doi.org/10.1093/molbev/msq012.
  30. Saibo NJM, Vriezen WH, Beemster GTS, Van Der Straeten D. Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant J. 2003;33(6):989-1000. https://doi.org/10.1046/j.1365-313X.2003.01684.x.
  31. Moubayidin L, Perilli S, Dello Ioio R, et al. The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr Biol. 2010;20(12):1138-43. https://doi.org/10.1016/j.cub.2010.05.035.
  32. Dello Ioio R, Linhares FS, Sabatini S. Emerging role of cytokinin as a regulator of cellular differentiation. Curr Opin Plant Biol. 2008;11(1):23-27. https://doi.org/10.1016/j.pbi.2007.10.006.
  33. Lofke C, Luschnig C, Kleine-Vehn J. Posttranslational modification and trafficking of PIN auxin efflux carriers. Mech Dev. 2013;130(1):82-94. https://doi.org/10.1016/j.mod.2012.02.003.
  34. Kleine-Vehn J, Leitner J, Zwiewka M, et al. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci USA. 2008;105(46):17812-17817. https://doi.org/10.1073/pnas.0808073105.
  35. Salanenka Y, Verstraeten I, Lofke C, et al. Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. Proc Natl Acad Sci U S A. 2018;115(14):3716-3721. https://doi.org/10.1073/pnas.1721760115.
  36. Lundin VF, Srayko M, Hyman AA, Leroux MR. Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. ele gans. Dev Biol. 2008;313(1):320-334. https://doi.org/10.1016/j.ydbio.2007.10.022.
  37. Torres MA, Jones JD, Dangl JL. Reactive oxygen species signaling in response to pathogens. Plant Phy siol. 2006;141(2):373-378. https://doi.org/10.1104/pp.106.079467.
  38. Roy Choudhury S, Pandey S. Phosphatidic acid binding inhibits RGS1 activity to affect specific signaling pathways in Arabidopsis. Plant J. 2017;90(3):466-477. https://doi.org/10.1111/tpj.13503.
  39. Achard P, Renou JP, Berthome R, et al. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol. 2008;18(9):656-660. https://doi.org/10.1016/j.cub.2008.04.034.
  40. Tsukagoshi H. Control of root growth and development by reactive oxygen species. Curr Opin Plant Biol. 2016;29:57-63. https://doi.org/10.1016/j.pbi.2015.10.012.
  41. Madsen EB, Madsen LH, Radutoiu S, et al. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature. 2003;425(6958):637-640. https://doi.org/10.1038/nature02045.
  42. Zhukov V, Radutoiu S, Madsen LH, et al. The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development. Mol Plant Microbe Interact. 2008;21(12):1600-1608. https://doi.org/10.1094/MPMI-21-12-1600.
  43. Kirienko AN, Porozov YB, Malkov NV, et al. Role of a receptor-like kinase K1 in pea Rhizobium symbiosis development. Planta. 2018;248(5):1101-1120. https://doi.org/10.1007/s00425-018-2944-4.
  44. Oldroyd GE, Murray JD, Poole PS, Downie JA. The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet. 2011;45:119-144. https://doi.org/10.1146/annurev-genet-110410-132549.
  45. Grunwald U, Nyamsuren O, Tamasloukht M, et al. Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol Biol. 2004;55(4):553-566. https://doi.org/10.1007/s11103-004-1303-y.
  46. Plet J, Wasson A, Ariel F, et al. MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J. 2011;65(4):622-633. https://doi.org/10.1111/j.1365-313X.2010.04447.x.
  47. Hirsch AM, Bhuvaneswari TV, Torrey JG, Bisse ling T. Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA. 1989;86(4):1244-1248. https://doi.org/10.1073/pnas.86.4.1244.
  48. Gamas P, Brault M, Jardinaud MF, Frugier F. Cytokinins in Symbiotic Nodulation: When, Where, What for? Trends Plant Sci. 2017;22(9):792-802. https://doi.org/10.1016/j.tplants.2017.06.012.
  49. McAdam EL, Reid JB, Foo E. Gibberellins promote nodule organogenesis but inhibit the infection stages of nodulation. J Exp Bot. 2018;69(8):2117-2130. https://doi.org/10.1093/jxb/ery046.
  50. Fonouni-Farde C, Tan S, Baudin M, et al. DELLA-media ted gibberellin signalling regulates Nod factor signalling and rhizobial infection. Nat Commun. 2016;7:12636. https://doi.org/10.1038/ncomms12636.
  51. Ferguson BJ, Ross JJ, Reid JB. Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol. 2005;138(4):2396-2405. https://doi.org/10.1104/pp.105.062414.
  52. Fonouni-Farde C, Kisiala A, Brault M, et al. DELLA1-mediated gibberellin signaling regulates cytokinin-dependent symbiotic nodulation. Plant Physiol. 2017;175(4):1795-1806. https://doi.org/10.1104/pp.17.00919.
  53. Jin Y, Liu H, Luo D, et al. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nat Commun. 2016;7:12433. https://doi.org/10.1038/ncomms12433.
  54. Harrison MJ. Cellular programs for arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol. 2012;15(6):691-8. https://doi.org/10.1016/j.pbi.2012.08.010.
  55. Smith SE, Smith FA. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol. 2011;62:227-250. https://doi.org/10.1146/annurev-arplant-042110-103846.
  56. Levy J, Bres C, Geurts R, et al. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science. 2004;303(5662):1361-1364. https://doi.org/10.1126/science.1093038.
  57. Banba M, Gutjahr C, Miyao A, et al. Divergence of evolutionary ways among common sym genes: CASTOR and CCaMK show functional conservation between two symbiosis systems and constitute the root of a common signaling pathway. Plant Cell Physiol. 2008;49(11): 1659-71. https://doi.org/10.1093/pcp/pcn153.
  58. Harrison MJ. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by Arbuscular mycorrhizal fungi. Plant Cell. 2002;14(10):2413-2429. https://doi.org/10.1105/tpc.004861.
  59. Floss DS, Levesque-Tremblay V, Park HJ, Harrison MJ. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula. Plant Signal Behav. 2016;11(4):e1162369. https://doi.org/10.1080/15592324.2016.1162369.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Dolgikh A.V., Dolgikh E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies