RNA interference in formation of the somatic genome of ciliates Paramecium and Tetrahymena

Cover Page

Cite item

Full Text

Abstract

Ciliates are the model of choice to study RNA interference, the mechanism playing key role in biology of these protists. The genome scanning processes of two ciliates, Tetrahymena and Paramecium (Oligohymenophorea), leading to formation of the somatic genome from the chromosomes of the generative nucleus are compared in the review. Matching of several simulta neously present in one cell genomes is mediated by small RNAs and results in precise reproduction of maternal somatic genome in the sexual progeny.

About the authors

Irina V. Nekrasova

Saint Petersburg State University

Email: ne-irina@yandex.ru

Associate Professor, Faculty of Biology

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

Alexey A. Potekhin

Saint Petersburg State University

Author for correspondence.
Email: alexey.potekhin@spbu.ru
ORCID iD: 0000-0003-4162-5923
ResearcherId: K-3633-2013

Professor, Faculty of Biology

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

References

  1. Adl SM, Simpson AG, Lane CE, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59(5):429-493. doi: 10.1111/j.1550-7408.2012.00644.x.
  2. Parfrey LW, Lahr DJ, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci USA. 2011;108(33):13624-13629. doi: 10.1073/pnas.1110633108.
  3. Cech TR, Zaug AJ, Grabowski PJ. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell. 1981;27(3 Pt 2):487-496. doi: 10.1016/0092-8674(81)90390-1.
  4. Caron F, Meyer E. Does Paramecium primaurelia use a different genetic code in its macronucleus? Nature. 1985;314(6007):185-188. doi: 10.1038/ 314185a0.
  5. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985; 43:405-413. doi: 10.1016/0092-8674(85)90170-9.
  6. Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996;84(6):843-851. doi: 10.1016/S0092-8674(00)81063-6.
  7. Meyer E, Garnier O. Non-Mendelian inheritance and homology-dependent effects in ciliates. Adv Genet. 2002;46:305-337. doi: 10.1016/S0065-2660(02) 46011-7.
  8. Coyne RS, Lhuillier-Akakpo M, Duharcourt S. RNA-guided DNA rearrangements in ciliates: is the best genome defence a good offence? Biol Cell. 2012;104(6):309-325. doi: 10.1111/boc.201100057.
  9. Coyne RS, Chalker DL, Yao MC. Genome downsizing during ciliate development: nuclear division of labor through chromosome restructuring. Annu Rev Genet. 1996;30:557-578. doi: 10.1146/annurev.genet.30.1.557.
  10. Swart EC, Bracht JR, Magrini V, et al. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes. PLoS Biol. 2013;11(1): e1001473. doi: 10.1371/journal.pbio.1001473.
  11. Chalker DL, Yao MC. DNA elimination in ciliates: transposon domestication and genome surveillance. Annu Rev Genet. 2011;45:227-246. doi: 10.1146/annurev-genet-110410-132432.
  12. Arnaiz O, Mathy N, Baudry C, et al. The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences. PLoS Genet. 2012;8(10):e1002984. doi: 10.1371/journal.pgen.1002984.
  13. Hamilton EP, Kapusta A, Huvos PE, et al. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. Elife. 2016;5. doi: 10.7554/eLife.19090.
  14. Ammermann D, Steinbrück G, von Berger L, Hennig W. The development of the macronucleus in the ciliated protozoan Stylonychia mytilus. Chromosoma. 1974;45(4):401-429. doi: 10.1007/BF00283386.
  15. Yao MC, Gorovsky MA. Comparison of the sequences of macro- and micronuclear DNA of Tetrahymena pyriformis. Chromosoma. 1974;48(1):1-18. doi: 10.1007/BF00284863.
  16. Noto T, Kataoka K, Suhren JH, et al. Small-RNA-Mediated Genome-wide trans-Recognition Network in Tetrahymena DNA Elimination. Mol Cell. 2015;59(2):229-242. doi: 10.1016/j.molcel.2015.05.024.
  17. Feng L, Wang G, Hamilton EP, et al. A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res. 2017;45(16):9481-9502. doi: 10.1093/nar/gkx652.
  18. Duret L, Cohen J, Jubin C, et al. Analysis of sequence variability in the macronuclear DNA of Paramecium tetraurelia: a somatic view of the germline. Genome Res. 2008;18(4):585-596. doi: 10.1101/gr.074534.107.
  19. Meyer E, Butler A, Dubrana K, et al. Sequence-specific epigenetic effects of the maternal somatic genome on developmental rearrangements of the zygotic genome in Paramecium primaurelia. Mol Cell Biol. 1996;17(7):3589-3599. doi: 10.1128/MCB.17.7.3589.
  20. Klobutcher LA, Herrick G. Consensus inverted terminal repeat sequence of Paramecium IESs: resemblance to termini of Tc1-related and Euplotes Tec transposons. Nucleic Acids Res. 1995;23(11):2006-13. doi: 10.1093/nar/23.11.2006.
  21. Eisen JA, Coyne RS, Wu M, et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 2006;4(9): e286. doi: 10.1371/journal.pbio.0040286.
  22. Aury JM, Jaillon O, Duret L, et al. Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature. 2006;444(7116):171-8. doi: 10.1038/nature05230.
  23. Nekrasova IV, Przybos E, Rautian MS, Potekhin AA. Electrophoretic karyotype polymorphism of sibling species of the Paramecium aurelia complex. J Eukaryot Microbiol. 2010;57(6):494-507. doi: 10.1111/j.1550-7408.2010.00507.x.
  24. Fan Q, Yao MC. A long stringent sequence signal for programmed chromosome breakage in Tetrahymena thermophila. Nucleic Acids Res. 2000;28(4):895-900. doi: 10.1093/nar/28.4.895.
  25. Fan Q, Yao MC. New telomere formation coupled with site-specific chromosome breakage in Tetrahymena thermophila. Mol Cell Biol. 1996;16(3):1267-1274. doi: 10.1128/MCB.16.3.1267.
  26. Yao MC, Zheng K, Yao CH. A conserved nucleotide sequence at the sites of developmentally regulated chromosomal breakage in Tetrahymena. Cell. 1987;48(5):779-788. doi: 10.1016/0092-8674(87) 90075-4.
  27. Cranert S, Heyse S, Linger BR, et al. Tetrahymena Pot2 is a developmentally regulated paralog of Pot1 that localizes to chromosome breakage sites but not to telomeres. Eukaryot Cell. 2014;13(12):1519-1529. doi: 10.1128/EC.00204-14.
  28. Le Mouël A, Butler A, Caron F, Meyer E. Developmentally regulated chromosome fragmentation linked to imprecise elimination of repeated sequences in paramecia. Eukaryotic Cell. 2003;2(5):1076-1090. doi: 10.1128/EC.2.5.1076-1090.2003.
  29. Caron F. A high degree of macronuclear chromosome polymorphism is generated by variable DNA rearrangements in Paramecium primaurelia during macronuclear differentiation. J Mol Biol. 1992;225(3):661-78. doi: 10.1016/0022-2836(92)90393-X.
  30. Duharcourt S, Butler A, Meyer E. Epigenetic self-regulation of developmental excision of an internal eliminated sequence in Paramecium tetraurelia. Genes Dev. 1995;9(16):2065-2077. doi: 10.1101/gad.9.16.2065.
  31. Duharcourt S, Keller A-M, Meyer E. Homology-dependent maternal inhibition of developmental excision of internal eliminated sequences in Paramecium tetraurelia. Mol Cell Biol. 1998;18(12):7075-7085. doi: 10.1128/MCB.18.12.7075.
  32. Chalker DL, Yao MC. Non-Mendelian, heritable blocks to DNA rearrangement are induced by loading the somatic nucleus of Tetrahymena thermophila with germ line-limited DNA. Mol Cell Biol. 1996;16(7):3658-67. doi: 10.1128/MCB.16.7.3658.
  33. Lhuillier-Akakpo M, Frapporti A, Wilkes CD, et al. Local effect of enhancer of Zeste-like reveals cooperation of epigenetic and cis-acting determinants for zygotic genome rearrangements. PLoS Genet. 2014;10(9):e1004665. doi: 10.1371/journal.pgen.1004665.
  34. Garnier O, Serrano V, Duharcourt S, Meyer E. RNA-mediated programming of developmental genome rearrangements in Paramecium tetraurelia. Mol Cell Biol. 2004; 24(17):7370-7379. doi: 10.1128/MCB.24.17.7370-7379.2004.
  35. Forney JD, Yantiri F, Mikami K. Developmentally controlled rearrangement of surface protein genes in Paramecium tetraurelia. J Eukaryot Microbiol. 1996;43(6):462-467. doi: 10.1111/j.1550-7408.1996.tb04505.x.
  36. Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell. 2002;110(6):689-699. doi: 10.1016/S0092-8674(02)00909-1.
  37. Noto T, Mochizuki K. Small RNA-Mediated trans-Nuclear and trans-Element Communications in Tetrahymena DNA Elimination. Curr Biol. 2018;28(12):1938-49 e1935. doi: 10.1016/j.cub.2018.04.071.
  38. Gruchota J, Denby Wilkes C, Arnaiz O, et al. A meiosis-specific Spt5 homolog involved in non-coding transcription. Nucleic Acids Res. 2017;45(8):4722-4732. doi: 10.1093/nar/gkw1318.
  39. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494-498. doi: 10.1038/35078107.
  40. Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet. 2006;50(2):81-99. doi: 10.1007/s00294-006-0078-x.
  41. Lee SR, Collins K. Two classes of endogenous small RNAs in Tetrahymena thermophila. Genes Dev. 2006;20(1):28-33. doi: 10.1101/gad.1377006.
  42. Mochizuki K, Gorovsky MA. A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev. 2005;19(1):77-89. doi: 10.1101/gad.1265105.
  43. Malone CD, Anderson AM, Motl JA, et al. Germ line transcripts are processed by a Dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetrahymena thermophila. Mol Cell Biol. 2005;25(20):9151-9164. doi: 10.1128/MCB.25.20.9151-9164.2005.
  44. Sandoval PY, Swart EC, Arambasic M, Nowacki M. Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting. Dev Cell. 2014;28(2):174-188. doi: 10.1016/j.devcel.2013.12.010.
  45. Marker S, Carradec Q, Tanty V, et al. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia. Nucleic Acids Res. 2014;42(11):7268-7280. doi: 10.1093/nar/gku223.
  46. Lepere G, Nowacki M, Serrano V, et al. Silencing-associated and meiosis-specific small RNA pathways in Paramecium tetraurelia. Nucleic Acids Res. 2009;37(3):903-915. doi: 10.1093/nar/gkn1018.
  47. Hoehener C, Hug I, Nowacki M. Dicer-like Enzymes with Sequence Cleavage Preferences. Cell. 2018;173(1):234-247 e237. doi: 10.1016/j.cell.2018.02.029.
  48. Kurth HM, Mochizuki K. 2’-O-methylation stabilizes Piwi-associated small RNAs and ensures DNA elimination in Tetrahymena. RNA. 2009;15(4):675-685. doi: 10.1261/rna.1455509.
  49. Bouhouche K, Gout JF, Kapusta A, et al. Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling. Nucleic Acids Res. 2011;39(10):4249-64. doi: 10.1093/nar/gkq1283.
  50. Couvillion MT, Lee SR, Hogstad B, et al. Sequence, biogenesis, and function of diverse small RNA classes bound to the Piwi family proteins of Tetrahymena thermophila. Genes Dev. 2009;23(17):2016-2032. doi: 10.1101/gad.1821209.
  51. Cerutti L, Mian N, Bateman A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci. 2000;25(10):481-482. doi: doi: 10.1016/S0968-0004(00)01641-8.
  52. Matranga C, Tomari Y, Shin C, et al. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell. 2005;123(4):607-620. doi: 10.1016/j.cell.2005.08.044.
  53. Mochizuki K, Gorovsky MA. Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement. Genes Dev. 2004;18(17):2068-2073. doi: 10.1101/gad.1219904.
  54. Liu Y, Taverna SD, Muratore TL, et al. RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev. 2007;21(12):1530-1545. doi: 10.1101/gad.1544207.
  55. Furrer DI, Swart EC, Kraft MF, et al. Two Sets of Piwi Proteins Are Involved in Distinct sRNA Pathways Leading to Elimination of Germline-Specific DNA. Cell Rep. 2017;20(2):505-520. doi: 10.1016/j.celrep.2017.06.050.
  56. Nowacki M, Zagorski-Ostoja W, Meyer E. Nowa1p and Nowa2p: novel putative RNA binding proteins involved in trans-nuclear crosstalk in Paramecium tetraurelia. Curr Biol. 2005;15(18):1616-1628. doi: 10.1016/j.cub.2005.07.033.
  57. Ignarski M, Singh A, Swart EC, et al. Paramecium tetraurelia chromatin assembly factor-1-like protein PtCAF-1 is involved in RNA-mediated control of DNA elimination. Nucleic Acids Res. 2014;42(19):11952-11964. doi: 10.1093/nar/gku874.
  58. Lepere G, Betermier M, Meyer E, Duharcourt S. Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia. Genes Dev. 2008;22(11):1501-1512. doi: 10.1101/gad.473008.
  59. Bednenko J, Noto T, DeSouza LV, et al. Two GW repeat proteins interact with Tetrahymena thermophila argonaute and promote genome rearrangement. Mol Cell Biol. 2009;29(18):5020-5030. doi: 10.1128/MCB.00076-09.
  60. Maliszewska-Olejniczak K, Gruchota J, Gromadka R, et al. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements. PLoS Genet. 2015;11(7):e1005383. doi: 10.1371/journal.pgen.1005383.
  61. Miao W, Xiong J, Bowen J, et al. Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PLoS One. 2009;4(2):e4429. doi: 10.1371/journal.pone.0004429.
  62. Aronica L, Bednenko J, Noto T, et al. Study of an RNA helicase implicates small RNA-noncoding RNA interactions in programmed DNA elimination in Tetrahymena. Genes Dev. 2008;22(16):2228-2241. doi: 10.1101/gad.481908.
  63. Nowak JK, Gromadka R, Juszczuk M, et al. Functional study of genes essential for autogamy and nuclear reorganization in Paramecium. Eukaryot Cell. 2011;10(3):363-372. doi: 10.1128/EC.00258-10.
  64. Liu Y, Taverna SD, Muratore TL, et al. RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev. 2007;21(12):1530-1545. doi: 10.1101/gad.1544207.
  65. Liu Y, Mochizuki K, Gorovsky MA. Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. Proc Natl Acad Sci USA. 2004;101(6):1679-1684. doi: 10.1073/pnas.0305421101.
  66. Matsuda A, Forney JD. The SUMO pathway is developmentally regulated and required for programmed DNA elimination in Paramecium tetraurelia. Eukaryot Cell. 2006;5(5):806-815. doi: 10.1128/EC.5.5.806-815.2006.
  67. Madireddi MT, Coyne RS, Smothers JF, et al. Pdd1p, a novel chromodomain-containing protein, links heterochromatin assembly and DNA elimination in Tetrahymena. Cell. 1996;87(1):75-84. doi: 10.1016/S0092-8674(00)81324-0.
  68. Coyne RS, Nikiforov MA, Smothers JF, et al. Parental expression of the chromodomain protein Pdd1p is required for completion of programmed DNA elimination and nuclear differentiation. Cell. 1999;4(5):865-872. doi: 10.1016/S1097-2765(00)80396-2.
  69. Taverna SD, Coyne RS, Allis CD. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell. 2002;110(6):701-711.doi: 10.1016/S0092-8674(02)00941-8.
  70. Nikiforov MA, Smothers JF, Gorovsky MA, Allis CD. Excision of micronuclear-specific DNA requires parental expression of pdd2p and occurs independently from DNA replication in Tetrahymena thermophila. Genes Dev. 1999;13(21):2852-2862.
  71. Yao MC, Yao CH, Halasz LM, et al. Identification of novel chromatin-associated proteins involved in programmed genome rearrangements in Tetrahymena. J Cell Sci. 2007;120(Pt 12):1978-1989. doi: 10.1242/jcs.006502.
  72. Janetopoulos C, Cole E, Smothers JF. et al. The conjusome: a novel structure in Tetrahymena found only during sexual reorganization. J Cell Sci. 1999;112:1003-1011.
  73. Baudry C, Malinsky S, Restituito M, et al. PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev. 2009;23(21):2478-83. doi: 10.1101/gad.547309.
  74. Gratias A, Bétermier M. Processing of double-strand breaks is involved in the precise excision of Paramecium IESs. Mol Cell Biol. 2003;23(20):7152-7162. doi: 10.1128/MCB.23.20.7152-7162.2003.
  75. Elick TA, Bauser CA, Fraser MJ. Excision of the piggyback transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica. 1996;98(1):33-41. doi: 10.1007/BF00120216.
  76. Fraser MJ, Ciszczon T, Elick T, Bauser C. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol. 1996;5(2):141-151. doi: 10.1111/j.1365-2583.1996.tb00048.x.
  77. Arnaiz O, Cain S, Cohen J, Sperling L. ParameciumDB: a community resource that integrates the Paramecium tetraurelia genome sequence with genetic data. Nucleic Acids Res. 2007;35(Database issue): D439-444. doi: 10.1093/nar/gkl777.
  78. Bouallegue M, Rouault JD, Hua-Van A, et al. Molecular Evolution of piggyBac Superfamily: From Selfishness to Domestication. Genome Biol Evol. 2017;9(2):323-339. doi: 10.1093/gbe/evw292.
  79. Henssen AG, Koche R, Zhuang J, et al. PGBD5 promotes site-specific oncogenic mutations in human tumors. Nat Genet. 2017;49(7):1005-1014. doi: 10.1038/ng.3866.
  80. Dubois E, Mathy N, Regnier V, et al. Multimerization properties of PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements. Nucleic Acids Res. 2017;45(6):3204-16. doi: 10.1093/nar/gkw1359.
  81. Bischerour J, Bhullar S, Denby Wilkes C, et al. Six domesticated PiggyBac transposases together carry out programmed DNA elimination in Paramecium. Elife. 2018;7. doi: 10.7554/eLife.37927.
  82. Saveliev SV, Cox MM. Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway. EMBO J. 1996;15(11):2858-2869. doi: 10.1002/j.1460-2075.1996.tb00647.x.
  83. Cheng CY, Vogt A, Mochizuki K, Yao MC. A domesticated piggyBac transposase plays key roles in he terochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol Biol Cell. 2010;21(10):1753-1762. doi: 10.1091/mbc.E09-12-1079.
  84. Cheng CY, Young JM, Lin CG, et al. The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila. Genes Dev. 2016;30(24):2724-2736. doi: 10.1101/gad.290460.116.
  85. Shieh AW, Chalker DL. LIA5 is required for nuclear reorganization and programmed DNA rearrangements occurring during tetrahymena macronuclear differentiation. PLoS One. 2013;8(9):e75337. doi: 10.1371/journal.pone.0075337.
  86. Kapusta A, Matsuda A, Marmignon A, et al. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining. PLoS Genet. 2011;7(4):e1002049. doi: 10.1371/journal.pgen.1002049.
  87. Matsuda A, Shieh AW, Chalker DL, Forney JD. The conjugation-specific Die5 protein is required for development of the somatic nucleus in both Paramecium and Tetrahymena. Eukaryot Cell. 2010;9(7):1087-99. doi: 10.1128/EC.00379-09.
  88. Henikoff S, Dalal Y. Centromeric chromatin: what makes it unique? Curr Opin Genet Dev. 2005;15(2):177-184. doi: 10.1016/j.gde.2005.01.004.
  89. Smith MM. Centromeres and variant histones: what, where, when and why? Curr Opin Cell Biol. 2002;14(3):279-285. doi: 10.1016/S0955-0674(02)00331-9.
  90. Cui B, Gorovsky MA. Centromeric histone H3 is essential for vegetative cell division and for DNA elimination during conjugation in Tetrahymena thermophila. Mol Cell Biol. 2006;26(12):4499-4510. doi: 10.1128/MCB.00079-06.
  91. Arambasic M, Sandoval PY, Hoehener C, et al. Pdsg1 and Pdsg2, novel proteins involved in deve lopmental genome remodelling in Paramecium. PLoS One. 2014;9(11):e112899. doi: 10.1371/journal.pone.0112899.
  92. Cummings DJ, Tait A, Goddard JM. Methylated bases in DNA from Paramecium aurelia. Biochim Biophys Acta. 1974;374(1):1-11. doi: 10.1016/0005-2787(74)90194-4.
  93. Harrison GS, Karrer KM. DNA synthesis, methylation and degradation during conjugation in Tetrahymena thermophila. Nucleic Acids Res. 1985;13(1):73-87. doi: 10.1093/nar/13.1.73.
  94. Epigenetics. Ed. by C.D. Allis, M.L. Caparros, T. Je nuwein, D. Reinberg. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2015.
  95. Sonneborn TM. Sex, sex inheritance and sex determination in Paramecium aurelia. Proc Natl Acad Sci USA. 1937;23(7):378-385. doi: 10.1073/pnas.23.7.378.
  96. Singh DP, Saudemont B, Guglielmi G, et al. Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature. 2014;509(7501):447-452. doi: 10.1038/nature13318.
  97. Orias E, Singh DP, Meyer E. Genetics and Epigenetics of Mating Type Determination in Paramecium and Tetrahymena. Annu Rev Microbiol. 2017;71:133-156. doi: 10.1146/annurev-micro-090816-093342.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Genome scanning process in Paramecium (A) and Tetrahymena (B).

Download (589KB)
3. Fig. 2. Small RNAs acting in genome scanning in Paramecium and Tetrahymena. In Paramecium these are scanRNAs produced by Dcl2/3p, and iesRNAs produced by Dcl5p in the amplification loop. In Tetrahymena early and late scanRNAs are formed by Dcl1p

Download (154KB)
4. Fig. 3. Expression periods of the PIWI proteins in life cycles of Paramecium and Tetrahymena. MIC(s) of each conjugating cell passes meiosis (R!), and all haploid nuclei except one get degraded. Remaining nucleus passes mitosis (M) leading to formation of two haploid pronuclei. One of pronuclei of each cell migrates to the partner cell and fuses with the stationary pronucleus of that cell. Zygotic nucleus, synkaryon, then divides mitotically (also labeled M)

Download (271KB)

Copyright (c) 2018 Nekrasova I.V., Potekhin A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies