Интерференция РНК в формировании соматического генома у инфузорий Paramecium и Tetrahymena

Обложка

Цитировать

Полный текст

Аннотация

Инфузории являются отличной моделью для исследования интерференции РНК, играющей важнейшую роль в биологии этих протистов. В обзоре в сравнительном аспекте рассмотрены механизмы геномного сканирования, при каждом половом процессе обеспечивающие формирование соматического генома из хромосом генеративного ядра, у инфузорий Tetrahymena и Paramecium, относящихся к классу Oligohymenophorea. Сравнение нескольких одновременно существующих в клетке геномов осуществляется при посредничестве малых РНК и приводит к точному воспроизведению материнского соматического генома у потомков.

Об авторах

Ирина Владимировна Некрасова

Санкт-Петербургский государственный университет

Email: ne-irina@yandex.ru

доцент, биологический факультет

Россия, 199034, г. Санкт-Петербург, Университетская наб., д.7/9

Алексей Анатольевич Потехин

Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: alexey.potekhin@spbu.ru
ORCID iD: 0000-0003-4162-5923
ResearcherId: K-3633-2013

профессор, биологический факультет

Россия, 199034, г. Санкт-Петербург, Университетская наб., д.7/9

Список литературы

  1. Adl SM, Simpson AG, Lane CE, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59(5):429-493. doi: 10.1111/j.1550-7408.2012.00644.x.
  2. Parfrey LW, Lahr DJ, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci USA. 2011;108(33):13624-13629. doi: 10.1073/pnas.1110633108.
  3. Cech TR, Zaug AJ, Grabowski PJ. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell. 1981;27(3 Pt 2):487-496. doi: 10.1016/0092-8674(81)90390-1.
  4. Caron F, Meyer E. Does Paramecium primaurelia use a different genetic code in its macronucleus? Nature. 1985;314(6007):185-188. doi: 10.1038/ 314185a0.
  5. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985; 43:405-413. doi: 10.1016/0092-8674(85)90170-9.
  6. Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996;84(6):843-851. doi: 10.1016/S0092-8674(00)81063-6.
  7. Meyer E, Garnier O. Non-Mendelian inheritance and homology-dependent effects in ciliates. Adv Genet. 2002;46:305-337. doi: 10.1016/S0065-2660(02) 46011-7.
  8. Coyne RS, Lhuillier-Akakpo M, Duharcourt S. RNA-guided DNA rearrangements in ciliates: is the best genome defence a good offence? Biol Cell. 2012;104(6):309-325. doi: 10.1111/boc.201100057.
  9. Coyne RS, Chalker DL, Yao MC. Genome downsizing during ciliate development: nuclear division of labor through chromosome restructuring. Annu Rev Genet. 1996;30:557-578. doi: 10.1146/annurev.genet.30.1.557.
  10. Swart EC, Bracht JR, Magrini V, et al. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes. PLoS Biol. 2013;11(1): e1001473. doi: 10.1371/journal.pbio.1001473.
  11. Chalker DL, Yao MC. DNA elimination in ciliates: transposon domestication and genome surveillance. Annu Rev Genet. 2011;45:227-246. doi: 10.1146/annurev-genet-110410-132432.
  12. Arnaiz O, Mathy N, Baudry C, et al. The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences. PLoS Genet. 2012;8(10):e1002984. doi: 10.1371/journal.pgen.1002984.
  13. Hamilton EP, Kapusta A, Huvos PE, et al. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. Elife. 2016;5. doi: 10.7554/eLife.19090.
  14. Ammermann D, Steinbrück G, von Berger L, Hennig W. The development of the macronucleus in the ciliated protozoan Stylonychia mytilus. Chromosoma. 1974;45(4):401-429. doi: 10.1007/BF00283386.
  15. Yao MC, Gorovsky MA. Comparison of the sequences of macro- and micronuclear DNA of Tetrahymena pyriformis. Chromosoma. 1974;48(1):1-18. doi: 10.1007/BF00284863.
  16. Noto T, Kataoka K, Suhren JH, et al. Small-RNA-Mediated Genome-wide trans-Recognition Network in Tetrahymena DNA Elimination. Mol Cell. 2015;59(2):229-242. doi: 10.1016/j.molcel.2015.05.024.
  17. Feng L, Wang G, Hamilton EP, et al. A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res. 2017;45(16):9481-9502. doi: 10.1093/nar/gkx652.
  18. Duret L, Cohen J, Jubin C, et al. Analysis of sequence variability in the macronuclear DNA of Paramecium tetraurelia: a somatic view of the germline. Genome Res. 2008;18(4):585-596. doi: 10.1101/gr.074534.107.
  19. Meyer E, Butler A, Dubrana K, et al. Sequence-specific epigenetic effects of the maternal somatic genome on developmental rearrangements of the zygotic genome in Paramecium primaurelia. Mol Cell Biol. 1996;17(7):3589-3599. doi: 10.1128/MCB.17.7.3589.
  20. Klobutcher LA, Herrick G. Consensus inverted terminal repeat sequence of Paramecium IESs: resemblance to termini of Tc1-related and Euplotes Tec transposons. Nucleic Acids Res. 1995;23(11):2006-13. doi: 10.1093/nar/23.11.2006.
  21. Eisen JA, Coyne RS, Wu M, et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 2006;4(9): e286. doi: 10.1371/journal.pbio.0040286.
  22. Aury JM, Jaillon O, Duret L, et al. Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature. 2006;444(7116):171-8. doi: 10.1038/nature05230.
  23. Nekrasova IV, Przybos E, Rautian MS, Potekhin AA. Electrophoretic karyotype polymorphism of sibling species of the Paramecium aurelia complex. J Eukaryot Microbiol. 2010;57(6):494-507. doi: 10.1111/j.1550-7408.2010.00507.x.
  24. Fan Q, Yao MC. A long stringent sequence signal for programmed chromosome breakage in Tetrahymena thermophila. Nucleic Acids Res. 2000;28(4):895-900. doi: 10.1093/nar/28.4.895.
  25. Fan Q, Yao MC. New telomere formation coupled with site-specific chromosome breakage in Tetrahymena thermophila. Mol Cell Biol. 1996;16(3):1267-1274. doi: 10.1128/MCB.16.3.1267.
  26. Yao MC, Zheng K, Yao CH. A conserved nucleotide sequence at the sites of developmentally regulated chromosomal breakage in Tetrahymena. Cell. 1987;48(5):779-788. doi: 10.1016/0092-8674(87) 90075-4.
  27. Cranert S, Heyse S, Linger BR, et al. Tetrahymena Pot2 is a developmentally regulated paralog of Pot1 that localizes to chromosome breakage sites but not to telomeres. Eukaryot Cell. 2014;13(12):1519-1529. doi: 10.1128/EC.00204-14.
  28. Le Mouël A, Butler A, Caron F, Meyer E. Developmentally regulated chromosome fragmentation linked to imprecise elimination of repeated sequences in paramecia. Eukaryotic Cell. 2003;2(5):1076-1090. doi: 10.1128/EC.2.5.1076-1090.2003.
  29. Caron F. A high degree of macronuclear chromosome polymorphism is generated by variable DNA rearrangements in Paramecium primaurelia during macronuclear differentiation. J Mol Biol. 1992;225(3):661-78. doi: 10.1016/0022-2836(92)90393-X.
  30. Duharcourt S, Butler A, Meyer E. Epigenetic self-regulation of developmental excision of an internal eliminated sequence in Paramecium tetraurelia. Genes Dev. 1995;9(16):2065-2077. doi: 10.1101/gad.9.16.2065.
  31. Duharcourt S, Keller A-M, Meyer E. Homology-dependent maternal inhibition of developmental excision of internal eliminated sequences in Paramecium tetraurelia. Mol Cell Biol. 1998;18(12):7075-7085. doi: 10.1128/MCB.18.12.7075.
  32. Chalker DL, Yao MC. Non-Mendelian, heritable blocks to DNA rearrangement are induced by loading the somatic nucleus of Tetrahymena thermophila with germ line-limited DNA. Mol Cell Biol. 1996;16(7):3658-67. doi: 10.1128/MCB.16.7.3658.
  33. Lhuillier-Akakpo M, Frapporti A, Wilkes CD, et al. Local effect of enhancer of Zeste-like reveals cooperation of epigenetic and cis-acting determinants for zygotic genome rearrangements. PLoS Genet. 2014;10(9):e1004665. doi: 10.1371/journal.pgen.1004665.
  34. Garnier O, Serrano V, Duharcourt S, Meyer E. RNA-mediated programming of developmental genome rearrangements in Paramecium tetraurelia. Mol Cell Biol. 2004; 24(17):7370-7379. doi: 10.1128/MCB.24.17.7370-7379.2004.
  35. Forney JD, Yantiri F, Mikami K. Developmentally controlled rearrangement of surface protein genes in Paramecium tetraurelia. J Eukaryot Microbiol. 1996;43(6):462-467. doi: 10.1111/j.1550-7408.1996.tb04505.x.
  36. Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell. 2002;110(6):689-699. doi: 10.1016/S0092-8674(02)00909-1.
  37. Noto T, Mochizuki K. Small RNA-Mediated trans-Nuclear and trans-Element Communications in Tetrahymena DNA Elimination. Curr Biol. 2018;28(12):1938-49 e1935. doi: 10.1016/j.cub.2018.04.071.
  38. Gruchota J, Denby Wilkes C, Arnaiz O, et al. A meiosis-specific Spt5 homolog involved in non-coding transcription. Nucleic Acids Res. 2017;45(8):4722-4732. doi: 10.1093/nar/gkw1318.
  39. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494-498. doi: 10.1038/35078107.
  40. Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet. 2006;50(2):81-99. doi: 10.1007/s00294-006-0078-x.
  41. Lee SR, Collins K. Two classes of endogenous small RNAs in Tetrahymena thermophila. Genes Dev. 2006;20(1):28-33. doi: 10.1101/gad.1377006.
  42. Mochizuki K, Gorovsky MA. A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev. 2005;19(1):77-89. doi: 10.1101/gad.1265105.
  43. Malone CD, Anderson AM, Motl JA, et al. Germ line transcripts are processed by a Dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetrahymena thermophila. Mol Cell Biol. 2005;25(20):9151-9164. doi: 10.1128/MCB.25.20.9151-9164.2005.
  44. Sandoval PY, Swart EC, Arambasic M, Nowacki M. Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting. Dev Cell. 2014;28(2):174-188. doi: 10.1016/j.devcel.2013.12.010.
  45. Marker S, Carradec Q, Tanty V, et al. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia. Nucleic Acids Res. 2014;42(11):7268-7280. doi: 10.1093/nar/gku223.
  46. Lepere G, Nowacki M, Serrano V, et al. Silencing-associated and meiosis-specific small RNA pathways in Paramecium tetraurelia. Nucleic Acids Res. 2009;37(3):903-915. doi: 10.1093/nar/gkn1018.
  47. Hoehener C, Hug I, Nowacki M. Dicer-like Enzymes with Sequence Cleavage Preferences. Cell. 2018;173(1):234-247 e237. doi: 10.1016/j.cell.2018.02.029.
  48. Kurth HM, Mochizuki K. 2’-O-methylation stabilizes Piwi-associated small RNAs and ensures DNA elimination in Tetrahymena. RNA. 2009;15(4):675-685. doi: 10.1261/rna.1455509.
  49. Bouhouche K, Gout JF, Kapusta A, et al. Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling. Nucleic Acids Res. 2011;39(10):4249-64. doi: 10.1093/nar/gkq1283.
  50. Couvillion MT, Lee SR, Hogstad B, et al. Sequence, biogenesis, and function of diverse small RNA classes bound to the Piwi family proteins of Tetrahymena thermophila. Genes Dev. 2009;23(17):2016-2032. doi: 10.1101/gad.1821209.
  51. Cerutti L, Mian N, Bateman A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci. 2000;25(10):481-482. doi: doi: 10.1016/S0968-0004(00)01641-8.
  52. Matranga C, Tomari Y, Shin C, et al. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell. 2005;123(4):607-620. doi: 10.1016/j.cell.2005.08.044.
  53. Mochizuki K, Gorovsky MA. Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement. Genes Dev. 2004;18(17):2068-2073. doi: 10.1101/gad.1219904.
  54. Liu Y, Taverna SD, Muratore TL, et al. RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev. 2007;21(12):1530-1545. doi: 10.1101/gad.1544207.
  55. Furrer DI, Swart EC, Kraft MF, et al. Two Sets of Piwi Proteins Are Involved in Distinct sRNA Pathways Leading to Elimination of Germline-Specific DNA. Cell Rep. 2017;20(2):505-520. doi: 10.1016/j.celrep.2017.06.050.
  56. Nowacki M, Zagorski-Ostoja W, Meyer E. Nowa1p and Nowa2p: novel putative RNA binding proteins involved in trans-nuclear crosstalk in Paramecium tetraurelia. Curr Biol. 2005;15(18):1616-1628. doi: 10.1016/j.cub.2005.07.033.
  57. Ignarski M, Singh A, Swart EC, et al. Paramecium tetraurelia chromatin assembly factor-1-like protein PtCAF-1 is involved in RNA-mediated control of DNA elimination. Nucleic Acids Res. 2014;42(19):11952-11964. doi: 10.1093/nar/gku874.
  58. Lepere G, Betermier M, Meyer E, Duharcourt S. Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia. Genes Dev. 2008;22(11):1501-1512. doi: 10.1101/gad.473008.
  59. Bednenko J, Noto T, DeSouza LV, et al. Two GW repeat proteins interact with Tetrahymena thermophila argonaute and promote genome rearrangement. Mol Cell Biol. 2009;29(18):5020-5030. doi: 10.1128/MCB.00076-09.
  60. Maliszewska-Olejniczak K, Gruchota J, Gromadka R, et al. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements. PLoS Genet. 2015;11(7):e1005383. doi: 10.1371/journal.pgen.1005383.
  61. Miao W, Xiong J, Bowen J, et al. Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PLoS One. 2009;4(2):e4429. doi: 10.1371/journal.pone.0004429.
  62. Aronica L, Bednenko J, Noto T, et al. Study of an RNA helicase implicates small RNA-noncoding RNA interactions in programmed DNA elimination in Tetrahymena. Genes Dev. 2008;22(16):2228-2241. doi: 10.1101/gad.481908.
  63. Nowak JK, Gromadka R, Juszczuk M, et al. Functional study of genes essential for autogamy and nuclear reorganization in Paramecium. Eukaryot Cell. 2011;10(3):363-372. doi: 10.1128/EC.00258-10.
  64. Liu Y, Taverna SD, Muratore TL, et al. RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev. 2007;21(12):1530-1545. doi: 10.1101/gad.1544207.
  65. Liu Y, Mochizuki K, Gorovsky MA. Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. Proc Natl Acad Sci USA. 2004;101(6):1679-1684. doi: 10.1073/pnas.0305421101.
  66. Matsuda A, Forney JD. The SUMO pathway is developmentally regulated and required for programmed DNA elimination in Paramecium tetraurelia. Eukaryot Cell. 2006;5(5):806-815. doi: 10.1128/EC.5.5.806-815.2006.
  67. Madireddi MT, Coyne RS, Smothers JF, et al. Pdd1p, a novel chromodomain-containing protein, links heterochromatin assembly and DNA elimination in Tetrahymena. Cell. 1996;87(1):75-84. doi: 10.1016/S0092-8674(00)81324-0.
  68. Coyne RS, Nikiforov MA, Smothers JF, et al. Parental expression of the chromodomain protein Pdd1p is required for completion of programmed DNA elimination and nuclear differentiation. Cell. 1999;4(5):865-872. doi: 10.1016/S1097-2765(00)80396-2.
  69. Taverna SD, Coyne RS, Allis CD. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell. 2002;110(6):701-711.doi: 10.1016/S0092-8674(02)00941-8.
  70. Nikiforov MA, Smothers JF, Gorovsky MA, Allis CD. Excision of micronuclear-specific DNA requires parental expression of pdd2p and occurs independently from DNA replication in Tetrahymena thermophila. Genes Dev. 1999;13(21):2852-2862.
  71. Yao MC, Yao CH, Halasz LM, et al. Identification of novel chromatin-associated proteins involved in programmed genome rearrangements in Tetrahymena. J Cell Sci. 2007;120(Pt 12):1978-1989. doi: 10.1242/jcs.006502.
  72. Janetopoulos C, Cole E, Smothers JF. et al. The conjusome: a novel structure in Tetrahymena found only during sexual reorganization. J Cell Sci. 1999;112:1003-1011.
  73. Baudry C, Malinsky S, Restituito M, et al. PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev. 2009;23(21):2478-83. doi: 10.1101/gad.547309.
  74. Gratias A, Bétermier M. Processing of double-strand breaks is involved in the precise excision of Paramecium IESs. Mol Cell Biol. 2003;23(20):7152-7162. doi: 10.1128/MCB.23.20.7152-7162.2003.
  75. Elick TA, Bauser CA, Fraser MJ. Excision of the piggyback transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica. 1996;98(1):33-41. doi: 10.1007/BF00120216.
  76. Fraser MJ, Ciszczon T, Elick T, Bauser C. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol. 1996;5(2):141-151. doi: 10.1111/j.1365-2583.1996.tb00048.x.
  77. Arnaiz O, Cain S, Cohen J, Sperling L. ParameciumDB: a community resource that integrates the Paramecium tetraurelia genome sequence with genetic data. Nucleic Acids Res. 2007;35(Database issue): D439-444. doi: 10.1093/nar/gkl777.
  78. Bouallegue M, Rouault JD, Hua-Van A, et al. Molecular Evolution of piggyBac Superfamily: From Selfishness to Domestication. Genome Biol Evol. 2017;9(2):323-339. doi: 10.1093/gbe/evw292.
  79. Henssen AG, Koche R, Zhuang J, et al. PGBD5 promotes site-specific oncogenic mutations in human tumors. Nat Genet. 2017;49(7):1005-1014. doi: 10.1038/ng.3866.
  80. Dubois E, Mathy N, Regnier V, et al. Multimerization properties of PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements. Nucleic Acids Res. 2017;45(6):3204-16. doi: 10.1093/nar/gkw1359.
  81. Bischerour J, Bhullar S, Denby Wilkes C, et al. Six domesticated PiggyBac transposases together carry out programmed DNA elimination in Paramecium. Elife. 2018;7. doi: 10.7554/eLife.37927.
  82. Saveliev SV, Cox MM. Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway. EMBO J. 1996;15(11):2858-2869. doi: 10.1002/j.1460-2075.1996.tb00647.x.
  83. Cheng CY, Vogt A, Mochizuki K, Yao MC. A domesticated piggyBac transposase plays key roles in he terochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol Biol Cell. 2010;21(10):1753-1762. doi: 10.1091/mbc.E09-12-1079.
  84. Cheng CY, Young JM, Lin CG, et al. The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila. Genes Dev. 2016;30(24):2724-2736. doi: 10.1101/gad.290460.116.
  85. Shieh AW, Chalker DL. LIA5 is required for nuclear reorganization and programmed DNA rearrangements occurring during tetrahymena macronuclear differentiation. PLoS One. 2013;8(9):e75337. doi: 10.1371/journal.pone.0075337.
  86. Kapusta A, Matsuda A, Marmignon A, et al. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining. PLoS Genet. 2011;7(4):e1002049. doi: 10.1371/journal.pgen.1002049.
  87. Matsuda A, Shieh AW, Chalker DL, Forney JD. The conjugation-specific Die5 protein is required for development of the somatic nucleus in both Paramecium and Tetrahymena. Eukaryot Cell. 2010;9(7):1087-99. doi: 10.1128/EC.00379-09.
  88. Henikoff S, Dalal Y. Centromeric chromatin: what makes it unique? Curr Opin Genet Dev. 2005;15(2):177-184. doi: 10.1016/j.gde.2005.01.004.
  89. Smith MM. Centromeres and variant histones: what, where, when and why? Curr Opin Cell Biol. 2002;14(3):279-285. doi: 10.1016/S0955-0674(02)00331-9.
  90. Cui B, Gorovsky MA. Centromeric histone H3 is essential for vegetative cell division and for DNA elimination during conjugation in Tetrahymena thermophila. Mol Cell Biol. 2006;26(12):4499-4510. doi: 10.1128/MCB.00079-06.
  91. Arambasic M, Sandoval PY, Hoehener C, et al. Pdsg1 and Pdsg2, novel proteins involved in deve lopmental genome remodelling in Paramecium. PLoS One. 2014;9(11):e112899. doi: 10.1371/journal.pone.0112899.
  92. Cummings DJ, Tait A, Goddard JM. Methylated bases in DNA from Paramecium aurelia. Biochim Biophys Acta. 1974;374(1):1-11. doi: 10.1016/0005-2787(74)90194-4.
  93. Harrison GS, Karrer KM. DNA synthesis, methylation and degradation during conjugation in Tetrahymena thermophila. Nucleic Acids Res. 1985;13(1):73-87. doi: 10.1093/nar/13.1.73.
  94. Epigenetics. Ed. by C.D. Allis, M.L. Caparros, T. Je nuwein, D. Reinberg. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2015.
  95. Sonneborn TM. Sex, sex inheritance and sex determination in Paramecium aurelia. Proc Natl Acad Sci USA. 1937;23(7):378-385. doi: 10.1073/pnas.23.7.378.
  96. Singh DP, Saudemont B, Guglielmi G, et al. Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature. 2014;509(7501):447-452. doi: 10.1038/nature13318.
  97. Orias E, Singh DP, Meyer E. Genetics and Epigenetics of Mating Type Determination in Paramecium and Tetrahymena. Annu Rev Microbiol. 2017;71:133-156. doi: 10.1146/annurev-micro-090816-093342.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Процесс геномного сканирования у Paramecium (A) и Tetrahymena (Б).

Скачать (589KB)
3. Рис. 2. Малые РНК, участвующие в геномном сканировании у парамеций и тетрахимен. У парамеций они представлены сканРНК, образующимися в результате работы белков Dcl2/3, и iesРНК, образующимися с помощью белка Dcl5 в петле усиления. У тетрахимен в геномном сканировании участвуют ранние и поздние сканРНК, формирующиеся с помощью белка Dcl1 и имеющие метилированную рибозу на 3’-конце

Скачать (154KB)
4. Рис. 3. Периоды экспрессии генов белков Piwi в жизненном цикле парамеций и тетрахимен. Редукционное деление микронуклеусов конъюгирующих клеток обозначено символом «R!». В каждой из конъюгирующих клеток из гаплоидных ядер, образовавшихся в результате мейоза микронуклеуса(ов), остается только одно, остальные разрушаются. Это единственное гаплоидное ядро делится митотически (М), в результате чего формируются два генетически идентичных гаплоидных пронуклеуса, один из которых (стационарный пронуклеус) остается в исходной клетке, а второй мигрирует в клетку партнера по половому процессу, где сливается со стационарным пронуклеусом второй клетки. Образовавшееся зиготическое ядро, синкарион, далее делится митотически (также обозначено М)

Скачать (271KB)

© Некрасова И.В., Потехин А.А., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах