Comparative analysis of the expression of stress-related genes in two pea genotypes contrasting in tolerance to cadmium

Cover Page

Cite item

Full Text

Abstract

Background. A major problem of the environmental pollution with heavy metals, including cadmium, requires an intensive study of the molecular and genetic mechanisms underlying the tolerance of plants to these toxic substances. In this study we present a comparative analysis of the expression of stress-related genes in two pea genotypes contrasting in tolerance to cadmium.

Materials and methods. A unique mutant of pea SGECdt, characterized by the increased tolerance to cadmium, and initial line SGE were used. Gene expression was analyzed by Real Time PCR. Results. In the line SGE cadmium increase the expression of genes, encoding catalase, chitinase, chitinase-like protein PRP4A and dirigent protein PI206. In the mutant SGECdt cadmium increase the expression of genes, encoding chitinase, glutathione reductase and defensin DRR230. In control samples expression of genes encoding PRP4A and DRRR230 was enhanced in mutant SGECdt versus line SGE.

Conclusion. It was shown that, the reaction of the mutant SGECdt at the molecular level differs from that of the line SGE. In the mutant SGECdt, a change in the expression of a number of genes is observed, which may indicate that cadmium entering the cell causes activation of defense reactions.

About the authors

Olga A. Kulaeva

All-Russian Research Institute for Agricultural Microbiology

Author for correspondence.
Email: okulaeva@arriam.ru
ORCID iD: 0000-0003-2687-9693

PhD, Senior Scientist, Laboratory of Genetics of Plant-Microbe Interactions

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Emma S. Gribchenko

All-Russian Research Institute for Agricultural Microbiology

Email: gribemma@gmail.com

Technician, Laboratory of Genetics of Plant-Microbe Interactions

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Evgeny A. Zorin

All-Russian Research Institute for Agricultural Microbiology

Email: kjokkjok8@gmail.com

Technician, Laboratory of Genetics of Plant-Microbe Interactions

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Marina S. Kliukova

All-Russian Research Institute for Agricultural Microbiology

Email: marina.kliukova@gmail.com

Research Engineer, Laboratory of Genetics of Plant-Microbe Interactions

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Vladimir A. Zhukov

All-Russian Research Institute for Agricultural Microbiology

Email: vzhukov@arriam.ru

PhD, Head of the Lab, Laboratory of Genetics of Plant-Microbe Interactions

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

References

  1. Clemens S, Aarts MG, Thomine S, Verbruggen N. Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci. 2013;18(2):92-99. doi: 10.1016/j.tplants.2012.08.003.
  2. Romero‐Puertas M, Palma J, Gomez M, Río L, Sanda lio L. Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ. 2002;25(5):677-86. doi: 10.1046/j.1365-3040.2002.00850.x.
  3. Wahid A, Arshad M, Farooq M. Cadmium Phytotoxicity: Responses, Mechanisms and Mitigation Stra tegies: A Review. In: Organic Farming, Pest Control and Remediation Soil Pollutant. Ed. by E. Lichtfouse. Dordrecht: Springer Netherlands; 2010. P. 371-403. doi: 10.1007/978-1-4020-9654-9_17.
  4. Kulaeva O, Tsyganov V. Molecular-genetic basis of cadmium tolerance and accumulation in higher plants. Russian Journal of Genetics: Applied Research. 2011;1:349. doi: 10.1134/S2079059711050108.
  5. Cuypers A, Plusquin M, Remans T, et al. Cadmium stress: an oxidative challenge. Biometals Int J Role Met Ions Biol Biochem Med. 2010;23(5):927-940. doi: 10.1007/s10534-010-9329-x.
  6. Repetto O, Bestel‐Corre G, Dumas‐Gaudot E, et al. Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol. 2003;157(3):555-67. doi: 10.1046/j.1469-8137.2003.00682.x.
  7. Tsyganov V, Belimov A, Borisov A, et al. A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of, cadmium. Ann Bot. 2007;99(2):227-237. doi: 10.1093/aob/mcl261.
  8. Kulaeva O, Tsyganov B. Fine mapping of a cdt locus mutation that leads to an increase in the tolerance of pea (Pisum sativum L.) to cadmium. Russian Journal of Genetics: Applied Research. 2013;3(2):120-126. doi: 10.1134/S2079059713020020.
  9. Rodríguez-Serrano M, Romero-Puertas M, Zabalza A, et al. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ. 2006;29(8):1532-1544. doi: 10.1111/j.1365-3040.2006.01531.x.
  10. Rivera-Becerril F, Metwally A, Martin-Laurent F, et al. Molecular Responses to Cadmium in Roots of Pisum sativum L. Water Air Soil Pollut. 2005;168(1-4):171-86. doi: 10.1007/s11270-005-1247-0.
  11. Rivera-Becerril F, van Tuinen D, Martin-Laurent F, et al. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza. 2005;16(1):51-60. doi: 10.1007/s00572-005-0016-7.
  12. Rodríguez-Serrano M, Romero-Puertas M, Pazmino D, et al. Cellular Response of Pea Plants to Cadmium Toxicity: Cross Talk between Reactive Oxygen Species, Nitric Oxide, and Calcium. Plant Physiol. 2009;150(1):229-243. doi: 10.1104/pp.108.131524.
  13. Kosterin O, Rozov S. Mapping of the new mutation blb and the problem of integrity of linkage group I. Pisum Genet. 1993;25:27-31.
  14. Кулаева О., Цыганов В., Тихонович И. Сравнительный анализ влияния кадмия на развитие и функционирование корневых систем у исходной линии гороха SGE и мутанта SGECdt, устойчивого к кадмию // Ботаника. Исследования. – 2010. – Т. 38. – С. 276–279. [Kulaeva O, Tsyganov V, Tikhonovich I. Sravnitel’nyy analiz vliyaniya kadmiya na razvitie i funktsionirovanie kornevykh sistem u iskhodnoy linii gorokha SGE i mutanta SGECdt, ustoychivogo k kadmiyu. Botanika Issledovaniya. 2010;38:276-279. (In Russ.)]
  15. Wu Z, Zhao X, Sun X, et al. Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Chemosphere. 2015;138:526-536. doi: 10.1016/j.chemosphere.2015.06.080.
  16. Yu R, Li D, Du X, et al. Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars. BMC Genomics. 2017;18:587. doi: 10.1186/s12864-017-3973-2.
  17. Li Z, Han X, Song X, et al. Overexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis. Front Plant Sci. 2017;8:1010. doi: 10.3389/fpls.2017.01010.
  18. Dixon R, Paiva N. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 1995;7(7):1085-1097. doi: 10.1105/tpc.7.7.1085.
  19. Commisso M, Toffali K, Strazzer P, et al. Impact of Phenylpropanoid Compounds on Heat Stress Tolerance in Carrot Cell Cultures. Front Plant Sci. 2016;7:1439. doi: 10.3389/fpls.2016.01439.
  20. Roth U, von Roepenack-Lahaye E, Clemens S. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot. 2006;57(15):4003-4013. doi: 10.1093/jxb/erl170.
  21. Sobkowiak R, Deckert J. Proteins induced by cadmium in soybean cells. J Plant Physiol. 2006;163(11):1203-6. doi: 10.1016/j.jplph.2005.08.017.
  22. Fusco N, Micheletto L, Dal Corso G, et al. Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot. 2005;56(421):3017-3027. doi: 10.1093/jxb/eri299.
  23. Pawlak-Sprada S, Arasimowicz-Jelonek M, Podgorska M, Deckert J. Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content. Acta Biochim Pol. 2011;58(2):211-216.
  24. Yamada T, Tanaka Y, Sriprasertsak P, et al. Phenylalanine Ammonia-Lyase Genes from Pisum sativum: Structure, Organ-Specific Expression and Regulation by Fungal Elicitor and Suppressor. Plant Cell Physiol. 1992;33(6):715-725. doi: 10.1093/oxfordjournals.pcp.a078310.
  25. Davin LB, Lewis NG. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol. 2000;123(2):453-462. doi: 10.1104/pp.123.2.453.
  26. Burlat V, Kwon M, Davin LB, Lewis NG. Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry. 2001;57(6):883-897. doi: 10.1016/S0031-9422(01)00117-0.
  27. Moura J, Bonine C, Viana J, et al. Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants. J Integr Plant Biol. 2010;52(4):360-376. doi: 10.1111/j.1744-7909.2010.00892.x.
  28. Cruz‐Ortega R, Ownby J. A protein similar to PR (pathogenesis-related) proteins is elicited by metal toxicity in wheat roots. Physiol Plant. 1993;89(1):211-219. doi: 10.1111/j.1399-3054.1993. tb01808.x.
  29. Gaudet D, Laroche A, Frick M, et al. Cold induced expression of plant defensin and lipid transfer protein transcripts in winter wheat. Physiol Plant. 2003;117(2):195-205. doi: 10.1034/j.1399-3054.2003.00041.x.
  30. Koike M, Okamoto T, Tsuda S, Imai R. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochem Biophys Res Commun. 2002;298(1):46-53. doi: 10.1016/S0006-291X(02)02391-4.
  31. Ahmed N, Park J, Jung H, et al. Identification and characterization of stress resistance related genes of Brassica rapa. Biotechnol Lett. 2012;34(5):979-987. doi: 10.1007/s10529-012-0860-4.
  32. Sui J, Jiang D, Zhang D, et al. The Salinity Responsive Mechanism of a Hydroxyproline-Tolerant Mutant of Peanut Based on Digital Gene Expression Profiling Analysis. PloS One. 2016;11(9): e0162556. doi: 10.1371/journal.pone.0162556.
  33. Nishiyama R, Le D, Watanabe Y, et al. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One. 2012;7(2):e32124. doi: 10.1371/journal.pone.0032124.
  34. Mirouze M, Sels J, Richard O, et al. A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J. 2006;47(3):329-342. doi: 10.1111/j.1365-313X.2006.02788.x.
  35. Cabot C, Gallego B, Martos S, et al. Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. Planta. 2013;237(1):337-349. doi: 10.1007/s00425-012-1779-7.
  36. Mith O, Benhamdi A, Castillo T, et al. The antifungal plant defensin AhPDF1. 1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells. Microbiologyopen. 2015;4(3):409-422. doi: 10.1002/mbo3.248.
  37. Nguyen N, Ranwez V, Vile D, et al. Evolutionary tinkering of the expression of PDF1s suggests their joint effect on zinc tolerance and the response to pathogen attack. Front Plant Sci. 2014;5:70. doi: 10.3389/fpls.2014.00070.
  38. Luo J, Huang J, Zeng D, et al. A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun. 2018;9:645. doi: 10.1038/s41467-018-03088-0.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes in the expression of the PRP4A (A, Б), PI206 (В, Г), DRR230 (Д, Е) genes in the roots and shoots of the SGE line and SGECdt mutant under control conditions and after exposition with 3 μM CdCl2. “1 d.” – 1 day, “3 d.” – 3 days. * significant differences, p < 0.05. ** significant differences, p < 0.01. К – the root, П – shoot. “-” – control, “+” – treatment

Download (113KB)
3. Fig. 2. Changes in the expression of the CAT (А, Б), CHT (В, Г), GR (Д, Е) genes in the roots and shoots of the SGE line and SGECdt mutant under control conditions and after exposition with 3 μM CdCl2. “1 d.” – 1 day, “3 d.” – 3 days. * significant differences, p < 0.05. ** significant differences, p < 0.01. К – the root, П – shoot. “-” – control, “+” – treatment

Download (171KB)
4. Fig. 3. Changes in the expression of the PAL1 (А, Б), PAL2 (В, Г) genes in the roots and shoots of the SGE line and SGECdt mutant under control conditions and after exposition with 3 μM CdCl2. “1 d.” – 1 day, “3 d.” – 3 days. * significant differences, p < 0.05. ** significant differences, p <0.01. К – the root, П – shoot. “-” – control, “+” – treatment

Download (75KB)

Copyright (c) 2018 Kulaeva O.A., Gribchenko E.S., Zorin E.A., Kliukova M.S., Zhukov V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies