Medicago lupulina lines with defects in the development of efficient arbuscular mycorrhiza

Cover Page

Cite item

Full Text

Abstract

Background. The work is aimed to solve actual problems in biology of arbuscular mycorrhiza (AM). Currently, a lot of mutants had been obtained in various plant model objects with defects in genes controlling AM development, however, the mechanisms controlling development of effective AM symbiosis are still unclear.

Materials and methods. The authors conducted a mutagenesis in Medicago lupulina, a new convenient model plant for molecular-genetic studies. High mycotrophic M. lupulina line have early and high response to mycorrhization, high seed production, as well as signs of dwarfism under conditions without of AM and low level of phosphorus available for plants. This method allows visually to identify plant lines with defects in AM symbiosis.

Results. 14 modes for mutagenesis by ethylmethanesulfonate were conducted. Usage of 3 mutagenesis modes allowed to obtain: productive M1 progeny with high part of viable seedlings (73.3%–86.0%); 1405 plants in M2 progeny.

Conclusion. According to population analysis for mutant plants in M2 progeny (up to M9 generation) 15 plant lines were selected: one Myc– plant line unable to form AM symbiosis, 4 Pen– plant lines unable to form AM symbiosis, but characterized by appressoria formation; 3 Rmd– plant lines forming low-activity ineffective AM symbiosis; 3 Rmd– plant lines forming low-activity effective AM and 4 Rmd++ plant lines forming effective AM with high abundance of symbiotic structures (mycelium/arbuscules/vesicles) in the roots.

About the authors

Andrey P. Yurkov

All-Russian Research Institute for Agricultural Microbiology; Saint Petersburg State University

Author for correspondence.
Email: yurkovandrey@yandex.ru
ORCID iD: 0000-0002-2231-6466
SPIN-code: 9909-4280
Scopus Author ID: 56835374200
ResearcherId: A-8513-2014
https://vk.com/andreyyurkov

Candidate of Biology, Assistant Professor, Senior Researcher, Laboratory No 4

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608; 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

Lidija M. Jacobi

All-Russian Research Institute for Agricultural Microbiology; Saint Petersburg State University

Email: Iidija-jacobi@yandex.ru
ORCID iD: 0000-0003-0387-5024
SPIN-code: 3384-4130

Research Scientist, Laboratory No 4

Russian Federation, sh. Podbel’skogo 3, St. Petersburg, 196608 Russia; Universitetskaya nab. 7/9, Saint-Petersburg, 199034 Russia

References

  1. Remy W, Taylor TN, Hass H, Kerp H. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA. 1994;91(25):11841-11843. doi: 10.1073/pnas.91.25.11841.
  2. Spatafora JW, Chang Y, Benny GL, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108(5):1028-46. doi: 10.3852/16-042.
  3. Smith SE, Read DJ. Mycorrhizal symbiosis. Cambridge (UK): Academic Press, Cambridge; 2008.
  4. Юрков А.П., Якоби Л.М., Дзюбенко Н.И., и др. Полиморфизм популяции Павловская люцерны хмелевидной по показателям продуктивности, микоризации и эффективности симбиоза с Glomus intraradices // Сельскохозяйственная биология. – 2011. – Т. 46. – № 3. – С. 65–70. [Yurkov AP, Yakobi LM, Dzyubenko NI, et al. Black medic pavlovskaya population is polymorphic for productivity, mycorrhization and symbiotic efficiency with Glomus intraradices. Selskokhoziaistvennaia Biol. 2011;46(3):65-70. (In Russ.)]
  5. Юрков А.П., Лактионов Ю.В., Кожемяков А.П., и др. Анализ симбиотической эффективности бактериальных и грибных препаратов на кормовых культурах по данным урожайности семян // Кормопроизводство. – 2017. – № 3. – С. 16–21. [Yurkov AP, Laktionov YV, Kozhemyakov AP, et al. Symbiotic efficiency of bacterial and fungal preparations for forage crops according to seed harvest. Kormoproizvodstvo. 2017;(3):16-21. (In Russ.)]
  6. Duc G, Messager A. Mutagenesis of pea (Pisum sativum L.) and the isolation of mutants for nodulation and nitrogen fixation. Plant Sci. 1989;60(2):207-213. doi: 10.1016/0168-9452(89)90168-4.
  7. Borisov A, Vasil’chikov AG, Voroshilova VA, et al. Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: a review of basic and applied aspects. Prikl Biokhim Mikrobiol. 2007;43(3):265-271. doi: 10.1134/S0003683807030027.
  8. Gianinazzi-Pearson V, Smith SE, Gianinani S, et al. Enzymatic studies on the metabolism of vesicular-arbusuclar mycorrhizas V. Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces? New Phytol. 1991;117(1):61-76. doi: 10.1111/j.1469-8137.1991.tb00945.x.
  9. Balaji B, Ba AM, LaRue TA, et al. Pisum sativum L. mutants insensitive to nodulation are also insensitive to invasion in vitro by mycorrhizal fungus Gigaspora margarita. Plant Sci. 1994;102(2):195-203. doi: 10.1016/0168-9452(94)90038-8.
  10. Sagan M, Morandi D, Tarenghi E, et al. Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula (Gaertn.) after γ-ray mutagenesis. Plant Sci. 1995;111(1):63-71. doi: 10.1016/0168-9452(95)04229-N.
  11. Shiztliffe SJ, Vessey JK. A nodulation (Nod+/Fix–) mutant of Phaseolus vulgaris L. has nodulelike structures lacking peripherial vascular bundles (Pvb–) and is resistant to mycorrhizal infection (Myc–). Plant Sci. 1996;118(2):209-220. doi: 10.1016/0168-9452(96)04427-5.
  12. Morandi D, Prado E, Sagan M, Duc G. Characterisation of new symbiotic Medicago truncatula (Gaertn.) mutants, and phenotypic or genotypic complementary information on previously described mutants. Mycorrhiza. 2005;15(4):283-289. doi: 10.1007/s00572-004-0331-4.
  13. Klingner A, Bothe H, Wray V. Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Phytochemistry. 1995;38(1):53-55. doi: 10.1016/0031-9422(94)00538-5.
  14. Cordier C, Pozo MJ, Barea JM, et al. Cell defense responses assosiated with localized and systemic resistance to Phitophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. MPMI. 1998;11(10):1017-1028. doi: 10.1094/MPMI.1998.11.10.1017.
  15. Larkan NJ, Smith SE, Barker SJ. Position of the reduced mycorrhizal colonization (Rmc) locus on the tomato genome map. Mycorrhiza. 2007;17(4):311-318. doi: 10.1007/s00572-007-0106-9.
  16. Reddy DMRS, Schorderet M, Feller U, Reinhardt D. A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. Plant J. 2007;51(5):739-750. doi: 10.1111/j.1365-313X.2007.03175.x.
  17. Morandi D, le Signor C, Gianinazzi-Pearson V, Duc G. A Medicago truncatula mutant hyper-responsive to mycorrhiza and defective for nodulation. Mycorrhiza. 2009;19(6):435-441. doi: 10.1007/s00572-009-0242-5.
  18. Юрков А.П., Якоби Л.М., Степанова Г.В., и др. Эффективность инокуляции форм люцерны хмелевидной грибом арбускулярной микоризы Glomus intraradices и внутрипопуляционная изменчивость растений по показателям продуктивности и микоризообразования // Сельскохозяйственная биология. – 2007. – Т. 42. – № 5. – С. 67–74. [Yurkov AP, Yakobi LM, Stepanova GV, et al. Inoculation efficiency of Glomus intrara- dices and intrapopulation variability in plants of Medicago lupulina L. on productiv ity and forming of mycorrhiza. Selskokhoziaistvennaia Biol. 2007;42(5):67-74. (In Russ.)]
  19. Юрков А.П., Якоби Л.М., Кожемяков А.П., Шишова М.Ф. Влияние арбускулярной микоризы на рост и развитие быстроотзывчивой на микоризацию линии люцерны хмелевидной (Medicago lupulina L.) // Вестник Санкт-Петербургского университета. Серия 3. Биология. – 2009. – № 2. – С. 138–144. [Yurkov AP, Yakobi LM, Kozhemyakov AP, Shishova MF. Influence of arbuscular mycorrhiza on growth and development of black medic (Medicago lupulina L.) plant line with high response to mycorrhization. Vestnik Sankt-Peterburgskogo universiteta. Seriia 3, Bio logiia. 2009;(2):138-144. (In Russ.)]
  20. Yurkova AP, Jacobi LM, Gapeeva NE, et al. Development of Arbuscular Mycorrhiza in Highly Responsive and Mycotrophic Host Plant-Black Medick (Medicago lupulina L.). Ontogenez. 2015;46(5):313-326. doi: 10.1134/S1062360415050082.
  21. Юрков А.П., Степанова Г.В., Якоби Л.М., и др. Продуктивность яровой и озимой пшеницы при использовании гриба арбускулярной микоризы Glomus intraradices в условиях дефицита влаги // Кормопроизводство. – 2012. – № 11. – С. 18–20. [Yurkov AP, Stepanova GV, Yakobi LM, et al. Productivity of spring and winter wheat in drought conditions dependent on the application of arbuscular mycorrhizal fungus Glomus intraradices. Kormoproizvodstvo. 2012;(11):18-20. (In Russ.)]
  22. Кирпичников Н.А., Завалин А.А., Волков А.А., и др. Эффективность фосфорных удобрений на периодически известкуемой почве при обработке семян ячменя и клевера биопрепаратами // Агрохимия. – 2012. – № 11. – С. 16–27. [Kirpichnikov NA, Zavalin AA, Volkov AA, et al. Effect of Phosphorus Fertilizers, Lime Materials, and Biopreparations on Barley and Clover Plants in a Mixed Plantation. Agrokhimiya. 2012;(11):16-27. (In Russ.)]
  23. Юрков А.П., Якоби Л.М., Юрченко Е.Г., и др. Оптимизация почвенно-биотического комплекса виноградных школок на основе обработки грибами арбускулярной микоризы // Научные труды ГНУ СКЗНИИСиВ. – 2013. – Т. 3. – С. 116–121. [Yurkov AP, Yakobi LM, Yurchenko EG, et al. Optimization of soil-biotic complex of vine nursery on the basis of treatment of arbuscular mycorrhizal fungi. Nauchnye trudy GNU SKZNIISiV. 2013;3:116-121. (In Russ.)]
  24. Сергалиев Н.Х., Юрков А.П., Тлепов А.С., и др. Влияние гриба арбускулярной микоризы Glomus intraradices на продуктивность яровой твердой пшеницы на темно-каштановой почве в условиях сухостепной зоны Приуралья // Новости науки Казахстана. – 2013. – № 3. – С. 149–154. [Sergaliev NKh, Yurkov AP, Tlepov AS, et al. Vliyanie griba arbuskulyarnoy mikorizy Glomus intraradices na produktivnost’ yarovoy tverdoy pshenitsy na temno-kashtanovoy pochve v usloviyakh sukhostepnoy zony Priural’ya. Novosti nauki Kazakhstana. 2013;(3):149-154. (In Russ.)]
  25. Ефимова И.Л., Юрков А.П. Новые приемы агро экологии для повышения качества посадочного материала яблони // Труды Кубанского ГАУ. – 2015. – № 55. – С. 73–77. [Efimova IL, Yurkov AP. Novye priemy agroekologii dlya povysheniya kachestva posadochnogo materiala yabloni. Trudy Kubanskogo GAU. 2015;(55):73-77. (In Russ.)]
  26. Юрков А.П., Шишова М.Ф., Семенов Д.Г. Особенности развития люцерны хмелевидной с эндомикоризным грибом. – Саарбрюкен: LAP, 2010. [Yurkov AP, Shishova MF, Semenov DG. Osobennosti razvitiya lyutserny khmelevidnoy s endomikoriznym gribom. Saarbruken: LAP; 2010. (In Russ.)]
  27. Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transact British Mycor Soc. 1970;55(1):158-161. doi: 10.1016/S0007–1536(70)80110-3.
  28. Trouvelot A, Kough JL, Gianinazzi-Pearson V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes ayant une signification fonctionnelle. In: Physiological and genetical aspects of mycorrhizae. Ed. by V. Gianinazzi-Pearson, S. Giani nazzi. Paris; 1986.
  29. Воробьев Н.И., Юрков А.П., Проворов Н.А. Программа вычисления индексов микоризации корней растений. Свидетельство о государственной регистрации программы для ЭВМ № 2016612112. Зарегистрирована 12.02.2016. – М., 2016. [Vorob’ev NI, Yurkov AP, Provorov NA. Programma vychisleniya indeksov mikorizatsii korney rasteniy. Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM № 2016612112. Zaregistrirovana 12.02.2016. Moscow; 2016. (In Russ.)]
  30. Shtark OY, Sulima AS, Zhernakov AI, et al. Arbuscular mycorrhiza development in pea (Pisum sativum L.) mutants impaired in five early nodulation genes including putative orthologs of NSP1 and NSP2. Symbiosis. 2016;68(1-3):129-144. doi: 10.1007/s13199-016-0382-2.
  31. Сидорова К.К. Исследование естественной мутабильности мутантов растений на примере Pisum sativum L. // Информационный вестник ВОГиС. – 2008. – Т. 12. – № 1–2. – С. 180–185. [Sidorova KK. A study of natural mutability in plants: a case of Pisum Sativum l. Informatsionnyy vestnik VOGiS. 2008;12(1-2):180-185. (In Russ.)]
  32. El Ghachtouli N, Martin-Tanguy J, Paynot M, et al. First report of inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS Letters. 1996;385(3):189-192. doi: 10.1016/0014-5793(96)00379-1.
  33. Herrera-Medina MJ, Steinkellner S, Vierheilig H, et al. Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol. 2007;175(3):554-564. doi: 10.1111/j.1469-8137.2007.02107.x.
  34. Kojima T, Saito K, Oba H, et al. Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation. Plant Cell Physiol. 2014;55(5):928-941. doi: 10.1093/pcp/pcu024.
  35. Duc G, Trouvelot A, Gianinazzi-Pearson V, et al. First report of non-mycorrhizal plant mutants (Myc–) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci. 1989;60(2):215-222. doi: 10.1016/0168-9452(89)90169-6.
  36. Sagan M, Duc G. Sym28 and sym29, two new genes involved in regulation of nodulation in pea (Pisum sativum L.). Symbiosis. 1996;20:229-245.
  37. Engvild K. Nodulation and nitrogen fixation mutants of pea, Pisum sativum L. Theor Appl Genet. 1987;74(6):711-713. doi: 10.1007/BF00247546.
  38. Kneen BE, LaRue TA. Induced symbiosis mutants of pea (Pisum sativum) and sweetclover (Melilotus alba annua). Plant Sci. 1988;58(2):177-182. doi: 10.1016/0168-9452(88)90007-6.
  39. Jacobsen E. Modification of symbiotic interaction of pea (Pisum sativum L.) and Rhizobium leguminosarum by induced mutations. Plant Soil. 1984;82(3):427-438. doi: 10.1007/BF02184280.
  40. Jacobsen E, Feenstra WJ. A new pea mutant with efficient nodulation in the presence of nitrate. Plant Sci Lett. 1984;33(3):337-344. doi: 10.1016/0304-4211(84)90025-7.
  41. Borisov AY, Morzina EV, Kulikova OA, et al. New symbiotic mutants of pea (Pisum sativum L.) affecting either nodule initiation or symbiosome development. Symbiosis. 1992;14:297-313.
  42. Tsyganov VE, Borisov AY, Rozov SM, et al. New symbiotic mutants of pea obtained after mutagenesis of laboratory line SGE. Pisum Genet. 1994;26:36-37.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme for selection of lines with defects in AM development obtained by EMS11 mutagenesis in strongly mycotrophic line Medicago lupulina. Pi – low level of available phosphorus in the substrate, E – AM efficiency, calculated in terms of wet weight of aboveground plant parts (shoots and leaves), F – AM frequency, ↑ and ↓ – high or low values of Pi, E and F, respectively

Download (408KB)

Copyright (c) 2018 Yurkov A.P., Jacobi L.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies