Diagnostic imaging in patients with mucopolysaccharidosis: important imaging patterns

Cover Page

Cite item

Full Text

Abstract

Background: The need for systematization, generalization and analysis of structural changes in various organs and systems that occur in patients with mucopolysaccharidosis (MPS). MPS is a rare disease, therefore, there is a lack of structured information in Russian publications in the field of radiology. Aims: The purpose of the study is to summarize our own experience, identifying the incidence of changes in various organs and describing the most significant changes and their causes. Identification of more informative and safe diagnostic methods of various organs, taking into account the specificity of changes in MPS. Methods: Retrospectively, 303 children with MPS of different types were examined (the sample included 70 cases verified by the laboratory studies and molecular genetics), the revision of tomograms and radiographs was carried out for the studies from 2015 to 2021. All the patients underwent MRI of the brain and cervical spine, X-ray of the skeletal bones. Results: The analysis of the obtained images revealed the most common changes, such as dysostosis (in 100%; 70 patients), stenosis of the spinal canal at the craniovertebral level (73%; 51 patients), atrophy (47%; 33 patients) and focal lesions of the brain substance (67%; 47 patients), hydrocephalus (28%; 20 patients), expansion of the perivascular spaces (70%; 58 patients). The pathophysiological mechanisms of the occurrence of structural changes have been analyzed and described. Conclusions: The assessment and comparison of various diagnostic methods for different organs and systems has demonstrated that MRI is the most informative imaging method for the assessment of the craniovertebral junction. Given the lower radiation exposure compared to computed tomography, it is preferable to use digital radiography for examining the bones of the extremities.

About the authors

Igor I. Yarmola

National Medical Research Center for Children’s Health

Author for correspondence.
Email: lord_dukich@bk.ru
ORCID iD: 0000-0002-1272-5119
SPIN-code: 5591-8066

Radiologist; address

Russian Federation, 2, b. 1, Lomonosovsky prospekt, Moscow, 119991

Anatoly V. Anikin

National Medical Research Center for Children’s Health

Email: anikacor@gmail.com
SPIN-code: 7592-1352

MD, Cand. Sci. (Med.)

Russian Federation, 2, b. 1, Lomonosovsky prospekt, Moscow, 119991

Lyubov E. Fomina

National Medical Research Center for Children’s Health

Email: love.fomina@mail.ru

Resident of Radiology Department

Russian Federation, 2, b. 1, Lomonosovsky prospekt, Moscow, 119991

References

  1. Clarke LA. The mucopolysaccharidoses: a success of molecular medicine. Expert Rev Mol Med. 2008;10:e1. doi: 10.1017/S1462399408000550
  2. Giugliani R, Federhen A, Rojas MV, et al. Mucopolysaccharidosis I, II, and VI: brief review and guidelines for treatment. Genet Mol Biol. 2010;33(4):589-604. doi: 10.1590/S1415-47572010005000093
  3. Muenzer J. Overview of the mucopolysaccharidoses. Rheumatology (Oxford). 2011; 50(Suppl 5):v4-v12. doi: 10.1093/rheumatology/ker394
  4. Vedolin L, Schwartz IV, Komlos M, et al. Brain MRI in mucopolysaccharidosis: effect of aging and correlation with biochemical findings. Neurology. 2007;69(9):917-924. doi: 10.1212/01.wnl.0000269782.80107.fe
  5. Neulfeld EF, Muenzer J. The mucopolysaccharidosis. In: Scriver C.R., Beaudet A.L., Sly W.S., Valle D., eds. The metabolic and molecular basis of inherited disease. Vol. 3. 8th ed. McGraw-Hill, New York; 2001. Р. 3421-3452.
  6. Albano LM, Sugayama SS, Bertola DR, et al. Clinical and laboratorial study of 19 cases of mucopolysaccharidoses. Rev Hosp Clin Fac Med S Paulo. 2000;55:213-218. doi: 10.1590/s0041-87812000000600004
  7. Muenzer J. Mucopolysaccharidoses. Adv Pediatr. 1986;33:269-302.
  8. Matheus MG, Castillo M, Smith JK, et al. Brain MRI findings in patients with mucopolysaccharidosis types I and II and mild clinical presentation. Neuroradiology. 2004;46:666-672. doi: 10.1007/s00234-004-1215-1
  9. Cheon JE, Kim IO, Hwang YS, et al. Leukodystrophy in children: a pictorial review of MR imaging features. Radio Graphics. 2002;22(3):461-476. doi: 10.1148/radiographics.22.3.g02ma01461
  10. Gabrielli O, Polonara G, Regnicolo L, et al. Correlation between cerebral MRI abnormalities and mental retardation in patients with mucopolysaccharidoses. Am J Med Genet A. 2004;125A(3):224-231. doi: 10.1002/ajmg.a.20515
  11. Kwee RM, Kwee TC. Virchow-Robin spaces at MR imaging. Radio Graphics. 2007;27(4):1071-1086. doi: 10.1148/rg.274065722
  12. Zhang ET, Inman CB, Weller RO. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990;170:111-123.
  13. Schley D, Carare-Nnadi R, Please CP, et al. Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol. 2006;238(4):962-974. doi: 10.1016/j.jtbi.2005.07.005
  14. Barkovich AJ, Patay Z. Metabolic, toxic and inflammatory brain disorders. In: Barkovich A.J., Raybaud C., eds. Pediatric neuroimaging. 5th ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2012. Р. 81-239.
  15. Dekaban AS, Constantopoulos G. Mucopolysaccharidosis type I, II, IIIA and V: pathological and biochemical abnormalities in the neural and mesenchymal elements of the brain. Acta Neuro-pathol (Berl). 1977;39(1):1-7. doi: 10.1007/BF00690379
  16. Alqahtani E, Huisman TA, Boltshauser E, et al. Mucopolysaccharidoses type I and II: new neuroimaging findings in the cerebellum. Eur J Paediatr Neurol. 2014;18(2):211-217. doi: 10.1016/j.ejpn.2013.11.014
  17. Zafeiriou DI, Batzios SP. Brain and spinal MR imaging findings in mucopolysaccharidoses: a review. AJNR Am J Neuroradiol. 2013;34(1):5-13. doi: https://doi.org/10.3174/ajnr.A2832
  18. Manara R, Priante E, Grimaldi M, et al. Brain and spine MRI features of Hunter disease: frequency, natural evolution and response to therapy. J Inherit Metab Dis. 2011;34(3):763-780. doi: 10.1007/s10545-011-9317-5
  19. Lee C, Dineen TE, Brack M, et al. The mucopolysaccharidoses: characterization by cranial MR imaging. AJNR Am J Neuroradiol. 1993;14(6):1285-1292.
  20. Finn CT, Vedolin L, Schwartz IV, et al. Magnetic resonance imaging findings in Hunter syndrome. Acta Paediatr. 2008;97(457):61-68. doi: 10.1111/j.1651-2227.2008.00646.x
  21. Beck M, Cole G. Disc oedema in association with Hunter’s syndrome: ocular histopathological findings. Br J Ophthalmol. 1984;68(8):590-594. doi: 10.1136/bjo.68.8.590
  22. Vedolin L, Schwartz IV, Komlos M, et al. Correlation of MR imaging and MR spectroscopy findings with cognitive impairment in mucopolysaccharidosis II. AJNR Am J Neuroradiol. 2007;28(6):1029-1033. doi: 10.3174/ajnr.A0510
  23. Shapiro E, Guler OE, Rudser K, et al. An exploratory study of brain function and structure in mucopolysaccharidosis type I: long term observations following hematopoietic cell transplantation (HCT). Mol Genet Metab. 2012;107(1-2):116-121. doi: 10.1016/j.ymgme.2012.07.016
  24. Kumar M, Nasrallah IM, Kim S, et al. High-resolution magnetic resonance microscopy and diffusion tensor imaging to assess brain structural abnormalities in the murine mucopolysaccharidosis VII model. J Neuropathol Exp Neurol. 2014;73(1):39-49. doi: 10.1097/NEN.0000000000000023
  25. Satzer D, DiBartolomeo C, Ritchie MM, et al. Assessment of dysmyelination with RAFFn MRI: application to murine MPS I. PLoS One. 2015;10(2):e0116788. doi: 10.1371/journal.pone.0116788
  26. Barone R, Parano E, Trifiletti RR, et al. White matter changes mimicking a leukodystrophy in a patient with mucopolysaccharidosis: characterization by MRI. J Neurol Sci. 2002;195(2):171-175. doi: 10.1016/s0022-510x(02)00014-x
  27. Rasalkar DD, Chu WC, Hui J, et al. Pictorial review of mucopolysaccharidosis with emphasis on MRI features of brain and spine. Br J Radiol. 2011;84(1001):469-477. doi: 10.1259/bjr/59197814
  28. White KK, Harmatz P. Orthopedic management of mucopolysaccharide disease. J Pediatr Rehabil Med. 2010;3(1):47-56. doi: 10.3233/PRM-2010-0102
  29. Aldenhoven M, Sakkers RJ, Boelens J, et al. Muscoskele-tal manifestations of lysosomal storage disorders. Ann Rheum Dis. 2009;68(11):1659-1665. doi: 10.1136/ard.2008.095315
  30. Mankin HJ, Jupiter J, Trahan CA. Hand and foot abnormalities associated with genetic diseases. Hand (NY). 2011;6(1):18-26. doi: 10.1007/s11552-010-9302-8.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Head MRI, T2 WI axial plane: a, б — arrow: multiple enlarged perivascular spaces; subarachnoid space and cerebral sulci are also dilated, that indicates cerebral atrophy. Skull bones are thickened.

Download (187KB)
3. Fig. 2. Head MRI: a (T2-WI axial plane) — lateral ventricles are markedly dilated due to hydrocephalus. Periventricular white matter lesions need to be differentiated between transependymal edema and cerebral lesions due to mucopolysaccharidosis; b (T2-WI axial plane) — arrow: shunt in a lateral ventricle; curved arrow: an enlarged and deformed lateral ventricle. Thinning periventricular white matter and enlarged cerebral sulci must be noted as a sign of cerebral atrophy; c (T2-WI sagittal plane) — arrow: an enlarged cisterna magna (mega cisterna magna). The occipital is bone locally thinned due to the liquor's pulsation.

Download (182KB)
4. Fig. 3. Head MRI, T2-WI axial plane. Arrows: dilated subarachnoid spaces and sulci as a sign of cerebral atrophy. Also noted are enlarged perivascular spaces in the peritrig-onal region.

Download (104KB)
5. Fig. 4. Head MRI, T2 Flair axial plane: a — arrows: non-specific white matter lesions (in this patient, the lesions are related to mucopolysaccharidoseies); b — arrows: periventricular confluent white matter lesions, simulating involvement patterin of leukodystrophy. Dilated ventricles and perivascular spaces are also noted.

Download (150KB)
6. Fig. 5. Spinal dysostosis: a (computer tomography of the vertebral column in the sagittal plane) — arrow: thickening, shortening and deformity of the sternum, curved arrow: flattening and deformation of vertebral bodies; b (MRI T2-WI in the sagittal plane) — arrow: the vertebral canal stenosis due to enlarged periodontoid soft tissue.

Download (175KB)

Copyright (c) 2021 Yarmola I.I., Anikin A.V., Fomina L.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies