Bacterial meningitis imaging in children

Cover Page

Cite item

Full Text

Abstract

In this review, we provide the data on the modern use of different MRI modalities and computer tomography (CT) as diagnostic and prognostic tools for meningitis of various etiology, first of all, bacterial purulent meningitis. Each of these techniques has its own field of application depending on the stage of the disease and the patient’s condition (necessity of intensive care procedures, ventilation support). The opinions on the diagnostic value of CT and structural MRI data differ and depend on the etiology and phase of the inflammatory process. In the recent years, the techniques of multiparametric MRI are widely implemented in the practice. Beside structural MRI, they include diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI) and MR spectroscopy (MRS), as well as studies with artificial contrast; there are some reports that these modalities are more effective as a diagnostic tool in meningitis. Thus, the use of multiparametric MRI techniques and CT with contrast is promising and justified for the diagnostics of patients with bacterial purulent meningitis from the viewpoint of enhanced sensitivity.

About the authors

Natalia V. Marchenko

Pediatric Research and Clinical Center for Infectious Diseases

Email: gmv2006@mail.ru
ORCID iD: 0000-0002-2684-9980
SPIN-code: 9813-1529

Cand. Sci. (Med.)

Russian Federation, 9 Prof. Popov street, 197022 Saint-Petersburg

Vladislav B. Voitenkov

Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg; Academy of Postgraduate Education under the FSBU “Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency”

Email: vlad203@inbox.ru
ORCID iD: 0000-0003-0448-7402
SPIN-code: 6190-6930

Cand. Sci. (Med.)

Russian Federation, 9 Prof. Popov street, 197022 Saint-Petersburg; Moscow

Natalia V. Skripchenko

Pediatric Research and Clinical Center for Infectious Diseases; Saint Petersburg State Pediatric Medical University; Saint Petersburg State Pediatric Medical University

Email: snv@niidi.ru
ORCID iD: 0000-0001-8927-3176
SPIN-code: 7980-4060

Dr. Sci. (Med.), Professor

Russian Federation, 9 Prof. Popov street, 197022 Saint-Petersburg; Saint Petersburg

Dmitry L. Dubitsky

Pediatric Research and Clinical Center for Infectious Diseases

Email: ddl_spb@mail.ru
ORCID iD: 0000-0002-8277-6050
SPIN-code: 6120-3730

Cand. Sci. (Med.)

Russian Federation, 9 Prof. Popov street, 197022 Saint-Petersburg

Mariia A. Bedova

Pediatric Research and Clinical Center for Infectious Diseases

Author for correspondence.
Email: dr.bedova@yandex.ru
ORCID iD: 0000-0001-8924-5300
SPIN-code: 9667-3210

MD

Russian Federation, 9 Prof. Popov street, 197022 Saint-Petersburg

Artem S. Ovchinnikov

Pediatric Research and Clinical Center for Infectious Diseases

Email: md-ovchinnikov@mail.ru
ORCID iD: 0000-0001-9785-5512

MD

Russian Federation, 9 Prof. Popov street, 197022 Saint-Petersburg

Darya N. Churkina

Pediatric Research and Clinical Center for Infectious Diseases

Email: churkina_darya@mail.ru
ORCID iD: 0000-0002-6940-5431

MD

Russian Federation, 9 Prof. Popov street, 197022 Saint-Petersburg

References

  1. Woodhouse A. Bacterial meningitis and brain abscess. Medicine. 2017;45(11):657–663.doi: 10.1016/j.mpmed.2017.08.012
  2. Скрипченко Н.В., Вильниц А.А., Иванова М.В. Федеральные рекомендации (протоколы) по диагностике и лечению бактериальных гнойных менингитов у детей. Санкт-Петербург, 2013. 60 с. [Skripchenko NV, Vilnits AA, Ivanova MV. Federal recommendations (protocols) on diagnostic and management of the bacterial meningitis in children. Saint Petersburg; 2013. 60 p. (In Russ).]
  3. Скрипченко Н.В., Лобзин Ю.В., Иванова Г.П., и др. Нейроинфекции у детей //Детские инфекции. 2014. Т. 13, № 1. С. 8–18. [Skripchenko NV, Lobzin YuV, Ivanova GP, et al. Neuroinfections in children. Detskie infekcii. 2014;13(1):8–18. (In Russ).]
  4. Алексеева Л.А., Бессонова Т.В., Васильева Ю.П., и др. Гнойные менингиты у детей. Руководство для врачей. 2-е изд., переработанное. Санкт-Петербург: СИНЭЛ, 2017. 404 с. [Alexeeva LA, Bessonova TV, Vasilyeva YuP, et al. Bacterial meningitis in children. Rukovodstvo dlya vrachey. 2nd ed., revised. Saint Petersburg: SINEL; 2017. 404 р. (In Russ).]
  5. Van de Beek D, Cabellos C, Dzupova O, et al. ESCMID guideline: diagnosis and treatment of acute bacterial meningitis. Clin Microbiol Infect. 2016;22 (Suppl 3):37–62. doi: 10.1016/j.cmi.2016.01.007
  6. Bo G, Hongjun L, Meng L, eds. Imaging of CNS Infections and Neuroimmunology. Springer; 2019. 213 p.
  7. Song Z, Chen X, Tang Y, Tang B. [Diagnostic value of magnetic resonance spectroscopy and intraoperative magnetic resonance imaging in the treatment of brain abscesses.(In Chinese)]. Zhonghua Yi Xue Za Zhi. 2014;94(25):1925–1928.
  8. Zhang J, Hu X, Hu X, Ye Y. Clinical features, outcomes and molecular profiles of drug resistance in tuberculous meningitis in non-HIV patients. Sci Rep. 2016;6:19072.doi: 10.1038/srep19072
  9. Shukla B, Aguilera EA. Aseptic Meningitis in adults and children: diagnostic and management challenges. J Clin Virol. 2017;94:110–114.doi: 10.1016/j.jcv.2017.07.016
  10. Costerus JM, Brouwer MC. Cranial computed tomography, lumbar puncture, and clinical deterioration in bacterial meningitis: a nationwide cohort study. Clin Infect Dis. 2018;67(6):920–926.doi: 10.1093/cid/ciy200
  11. Tuncer O, Caksen H. Cranial computed tomography in purulent meningitis of childhood. Int J Neuroscience. 2009;114(2):167–174.doi: 10.1080/00207450490269435
  12. Mohan S, Jain KK, Arabi M, Shah GV. Imaging of meningitis and ventriculitis. Neuroimaging Clin N Am. 2012;22(4):557–583. doi: 10.1016/j.nic.2012.04.003
  13. Saberi A, Roudbary SA, Ghayeghran A, et al. Diagnosis of meningitis caused by pathogenic microorganisms using magnetic resonance imaging: a systematic review. Basic Clin Neurosci. 2018;9(2):73–86. doi: 10.29252/nirp.bcn.9.2.73
  14. Redpath TW, Smith FW. Use of a double inversion recovery pulse sequence to image selectively grey or white brain matter. Br J Radiol. 1994;67(804):1258–1263. doi: 10.1259/0007-1285-67-804-1258
  15. Toh CH, Wei KC, Ng SH, et al. Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. AJNR Am J Neuroradiol. 2011;32(9):1646–1651. doi: 10.3174/ajnr.A2581
  16. Tosaka M, Sato N, Fujimaki H, Saito N. Wave-like appearance of diffuse pachymeningeal enhancement associated with intracranial hypotension. Neurorad. 2005;47(5):362–367. doi: 10.1007/s00234-005-1366-8
  17. Bang OY, Kim DI, Yoom SR, Choi IS. Idiopatic hypertrophic pachymeningeal lesions: correlation between clinical patterns and neuroimaging characteristics. Eur Neurol. 1998;39(1):49–56.doi: 10.1159/000007897
  18. Лобзин Ю.В., Рычкова С.В., Скрипченко Н.В., и др. Состояние инфекционной заболеваемости у детей в Российской Федерации за 2016–2017 гг. //Медицина экстремальных ситуаций. 2018. Т. 20, № 3. С. 253–261. [Lobzin YuV, Rychkova SV, Skripchenko NV, et al. Infectious diseases in children in Russian Federation in 2016–2017. Medicina extremalnih situaciy. 2018;20(3):253–261. (In Russ).]
  19. Vachha B, Moonis G, Holodny A. Infections of the Brain and Meninges. Semin Roentgenol. 2017;52(1):2–9. doi: 10.1053/j.ro.2016.07.003
  20. Biaukulaa VL, Tikoduaduab L. Meningitis in children in Fiji: etiology, epidemiology, and neurological sequelae. Int J Infect Dis. 2012;16(4):289–295. doi: 10.1016/j.ijid.2011.12.013
  21. Трофимова Т.Н., Ананьева Н.И., Назинкина Ю.В. Нейрорадиология. Санкт-Петербург: СПб МАПО, 2005. 288 с. [Trofimova TN, Ananyeva NI, Nazinkina YuV. Neuroradiology. Saint Petersburg: Saint Petersburg MAPO; 2005. 288 p. (In Russ).]
  22. Kastrup O, Wanke I, Maschke M. Neuroimaging of infections of the central nervous system. Semin Neurol. 2008;28(4):511–522.doi: 10.1055/s-0028-1083688
  23. Lin WC, Chen PC, Wang HC, et al. Diffusion tensor imaging study of white matter damage in chronic meningitis. PLoS One. 2014;9(6):e98210.doi: 10.1371/journal.pone.0098210
  24. Mishra AM, Gupta RK, Saksena S, et al. Biological correlates of diffusivity in brain abscess. Magn Reson Med. 2005;54(4):878–885. doi: 10.1002/mrm.20645
  25. Ekusheva E., Danilov A.B., Vein A.M. Hemiparesis syndrome: clinical-pathophysiological analysis. Журнал неврологии и психиатрии им. С.С. Корсакова. 2002; 102 (11): 18.
  26. Muccio CF, Caranci F, D’Arco F, et al. Magnetic resonance features of pyogenic brain abscesses and differential diagnosis using morphological and functional imaging studies: a pictorial essay. J Neuroradiol. 2014;41(3):153–167. doi: 10.1016/j.neurad.2014.05.004
  27. Kumar P, Suresh S. Acute Bacterial Meningitis Beyond the Neonatal Period. In: Principles and Practice of Pediatric Infectious Diseases, New York; 2018.
  28. Weinberg GA. Brain Abscess. Pediatr Rev. 2018;39(5):270–272. doi: 10.1542/pir.2017-0147
  29. Azad R, Tayal M, Azad S, et al. Qualitative and quantitative comparison of contrast-enhanced fluid-attenuated inversion recovery, magnetization transfer spin echo, and fat-saturation t1-weighted sequences in infectious meningitis. Korean J Radiol. 2017;18(6):973–982. doi: 10.3348/kjr.2017.18.6.973
  30. Maruyama S, Kodera K, Kuratuji G, Suda M. [An infant in whom contrast-enhanced fluid attenuated inversion recovery (FLAIR) MRI was useful for the diagnosis of meningitis and devising a treatment strategy. (In Japanese)]. No To Hattatsu. 2017;49(1):42–45.
  31. Екушева Е.В., Данилов А.Б. Наследственная спастическая параплегия. Журнал неврологии и психиатрии им. С.С. Корсакова. 2002; 8: 44.
  32. Dunbar M. Stroke in pediatric bacterial meningitis: population-based epidemiology. Pediatric Neurology. 2018;89:11–18. doi: 10.1016/j.pediatrneurol.2018.09.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Brain MRI of a 3 year-old patient with bacterial meningitis. Diffuse increase in the MR signal in the FLAIR mode in the furrows of the brain, isointense in the DWI mode (1000 s/mm2), no signs of the contrast accumulation. Focal changes in the subcortical parts of the brain without signs of blood-brain barrier disturbance.

Download (183KB)
3. Fig. 2. Contrast-free CT of the brain of a patient M, 3 months, diagnosis-bacterial meningitis of meningococcal etiology. Dynamic observation in the acute period with a difference of 6 days (the first observation on the first day of admission, red arrows). Increase of changes in the form of expansion of the subarachnoid space (green arrows), decrease in the density indicators of gray matter in the area of the anterior and posterior horns of the lateral ventricles (own data).

Download (137KB)
4. Fig. 3. Brain MRI of a child with clinically confirmed bacterial endocarditis: a — FLAIR (abscess in the left occipital lobe); b — ADC mape (restriction of diffusion from the contents of the abscess); с — T1-weighted brain MRI with contrast (contrast enhancement in the abscess wall).

Download (189KB)
5. Fig. 4. Native CT and MRI in the T2 and T1 modes with contrast enhancement in a child with clinically confirmed bacterial meningitis. Own data. a — native brain CT scan (extra-axial collection medial to the left frontal lobe, frontal sinuses are opacified); b — T2-weighted MRI scan of brain (subdural empyema); с — T1-weighted brain MRI with contrast (subdural empyema, leptomeningeal contrast enhancement) (own data).

Download (208KB)
6. Fig. 5. CT scan of the brain of a patient M., 4 months. Diagnosis at admission – meningitis of unknown etiology. The study was performed in the first hours after admission. The expansion of the external cerebrospinal fluid spaces of the frontal areas with a partially delimited accumulation of protein fluid and formation of sedimentation levels (empyema is marked by an arrow) is determined. Fragmented uneven accumulation of the contrast medium in the arachnoid membrane: a — CT scan of the brain, axial plane, native scan; b — CT scan of the brain, venous phase of contrast, axial plane (own data).

Download (175KB)
7. Fig. 6. A 2-year old patient. Meningitis, etiology — Haemophilis influenzae (b). With native CT in the right frontal lobe, a fuzzy hypodensity (+ 25HUvs+ 35HU) area is determined without signs of contrast agent accumulation. Increased accumulation of the contrast medium in the adjacent shells of the brain. (own data). a — native CT scan of brain; b — CT scan of the brain with contrast; с — CT scan of brain with contrast, (own data).

Download (178KB)

Copyright (c) 2021 Marchenko N.V., Voitenkov V.B., Skripchenko N.V., Dubitsky D.L., Bedova M.A., Ovchinnikov A.S., Churkina D.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies