Differential diagnostics of non-small-cell and small-cell lung cancer: modern approaches and promising technologies
- Authors: Konoshenko M.Y.1,2, Shutko E.V.1,2, Bryzgunova O.E.1,2, Ilyushchenko A.A.2, Danilova Y.M.2, Gorbunkov S.D.2, Zykov K.A.2, Laktionov P.P.1,2
-
Affiliations:
- Institute of Chemical Biology and Fundamental Medicine
- Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russsian Federation
- Issue: Vol 16, No 3 (2025)
- Pages: 71-87
- Section: Reviews
- URL: https://journals.rcsi.science/clinpractice/article/view/352032
- DOI: https://doi.org/10.17816/clinpract688161
- EDN: https://elibrary.ru/HVADZZ
- ID: 352032
Cite item
Abstract
Lung cancer represents a heterogeneous group of malignant neoplasms, among which two main forms can be distinguished — the non-small-cell and the small-cell lung cancer. These subtypes significantly differ by the histological, the molecular-genetic and the clinical characteristics, which defines the necessity of precise differential diagnostics for selecting the optimal treatment tactics. The review highlights the modern methods of diagnostics for the non-small-cell and the small-cell lung cancer, including the instrumental diagnostics, the histological and immunohistochemical examinations. Special attention was paid to the pros and cons of the promising non- and minimally invasive approaches, such as the analysis of circulating tumor cells, of the extracellular DNA, of the miRNA, of the marker proteins, of the volatile organic compounds and of the modern medical visualization (radiomics). Despite the significant progress in developing new diagnostic approaches, the problems remain that are related to the heterogeneity of tumors, the limited accessibility of the materials of small-cell lung cancer and the necessity of standardizing the new methods. The promising direction seems to the integration of multimodal approaches, combining the fluid biopsy, radiomics and the algorithms of machine learning, which can increase the precision of diagnostics and optimize the personalized treatment of the patients with various subtypes of lung cancer.
Full Text
##article.viewOnOriginalSite##About the authors
Maria Yu. Konoshenko
Institute of Chemical Biology and Fundamental Medicine; Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russsian Federation
Email: lacyjewelrymk@gmail.com
ORCID iD: 0000-0003-2925-9350
SPIN-code: 9374-8489
PhD
Russian Federation, Novosibirsk; MoscowEkaterina V. Shutko
Institute of Chemical Biology and Fundamental Medicine; Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russsian Federation
Author for correspondence.
Email: katshutko@gmail.com
ORCID iD: 0009-0004-3004-8969
SPIN-code: 3627-2494
Russian Federation, 8 Lavrentyeva ave, Novosibirsk, 630090; Moscow
Olga E. Bryzgunova
Institute of Chemical Biology and Fundamental Medicine; Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russsian Federation
Email: olga.bryzgunova@niboch.nsc.ru
ORCID iD: 0000-0003-3433-7261
SPIN-code: 9752-3241
PhD
Russian Federation, Novosibirsk; MoscowAntonina A. Ilyushchenko
Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russsian Federation
Email: Kdlmedwans@gmail.com
ORCID iD: 0009-0003-9068-5401
Russian Federation, Moscow
Yaroslava M. Danilova
Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russsian Federation
Email: yaroslava.danilova.82@mail.ru
ORCID iD: 0009-0003-6679-9185
Russian Federation, Moscow
Stanislav D. Gorbunkov
Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russsian Federation
Email: sdgorbunkov@mail.ru
ORCID iD: 0000-0002-8899-4294
SPIN-code: 7473-0530
MD, PhD, Assistant Professor
Russian Federation, MoscowKirill A. Zykov
Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russsian Federation
Email: kirillaz@inbox.ru
ORCID iD: 0000-0003-3385-2632
SPIN-code: 6269-7990
MD, PhD, corresponding member of the Russian Academy of Sciences, Professor of the Russian Academy of Sciences
Russian Federation, MoscowPavel P. Laktionov
Institute of Chemical Biology and Fundamental Medicine; Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russsian Federation
Email: lakt@1bio.ru
ORCID iD: 0000-0002-0866-0252
SPIN-code: 4114-3170
PhD
Russian Federation, Novosibirsk; MoscowReferences
- International Agency for Research on Cancer [Internet]. WHO Classification of Tumours Editorial Board. 5th ed. Vol. 5. Thoracic tumours. Lyon; 2021. 565 p. ISBN: 13.978-92-832-4506-3
- Клинические рекомендации. Злокачественное новообразование бронхов и лёгкого. Кодирование по Международной статистической классификации болезней и проблем, связанных со здоровьем: C34. Ассоциация онкологов России, Российское общество клинической онкологии, 2022. [Clinical recommendations. Malignant neoplasm of the bronchi and lungs. Coding according to the International Statistical Classification of Diseases and Related Health Problems: C34. Association of Oncologists of Russia, Russian Society of Clinical Oncology; 2022. (In Russ.)]. Режим доступа: https://cr.minzdrav.gov.ru/preview-cr/30_4 Дата обращения: 15.07.2025.
- Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–263. doi: 10.3322/caac.21834 EDN: FRJDQH
- Siegel RL, Miller KD, Fuchs HE, Jemal A. Erratum to “Cancer statistics, 2021”. CA Cancer J Clin. 2021;71(4):359. doi: 10.3322/caac.21669 EDN: CQUTZD
- Lu DN, Jiang Y, Zhang WC, et al. Lung cancer incidence in both sexes across global areas: data from 1978 to 2017 and predictions up to 2035. BMC Pulm Med. 2025;25(1):281. doi: 10.1186/s12890-025-03748-0
- GBD 2019 Tobacco Collaborators. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet. 2021;397(10292):2337–2360. doi: 10.1016/S0140-6736(21)01282-4
- Ha SY, Choi SJ, Cho JH, et al. Lung cancer in never-smoker Asian females is driven by oncogenic mutations, most often involving EGFR. Oncotarget. 2015;6(7):5465–5474. doi: 10.18632/oncotarget.2925
- Islami F, Goding Sauer A, Miller KD, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin. 2018;68(1):31–54. doi: 10.3322/caac.21440 EDN: YDXVDN
- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
- Злокачественные новообразования в России в 2022 году / под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой, И.В. Лисичниковой. Москва, 2023. 275 с. [Kaprin AD, Starinsky VV, Shakhzadova AO, Lisichnikova IV, editors. Malignant neoplasms in Russia in 2022. Moscow; 2023. 275 p. (In Russ.)]
- Zhang Y, Vaccarella S, Morgan E, et al. Global variations in lung cancer incidence by histological subtype in 2020. Lancet Oncol. 2023;24(11):1206–1218. doi: 10.1016/S1470-2045(23)00444-8
- Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. Int J Mol Sci. 2021;22(16):8661. doi: 10.3390/ijms22168661
- ESMO Рекомендации для пациентов. Немелкоклеточный рак лёгкого (НМРЛ). 2019. 65 с. [ESMO Recommendations for patients. Non-small cell lung cancer (NSCLC). 2019. 65 p. (In Russ.)]. Режим доступа: https://www.rosoncoweb.ru/patients/guidelines/NSCLC/ Дата обращения: 15.07.2025.
- Nanavaty P, Alvarez MS, Alberts WM. Lung cancer screening: advantages, controversies, and applications. Cancer Control. 2014;21(1):9–14. doi: 10.1177/107327481402100102
- Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. doi: 10.3322/caac.21763 EDN: SUTYDV
- George J, Lim JS, Jang SJ, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47–53. doi: 10.1038/nature14664 EDN: UOSZYD
- Melosky B, Kambartel K, Häntschel M, et al. Worldwide prevalence of epidermal growth factor receptor mutations in non-small cell lung cancer: a meta-analysis. Mol Diagn Ther. 2022;26(1):7–18. doi: 10.1007/s40291-021-00563-1 EDN: IBRURO
- Bironzo P, Cani M, Jacobs F, et al. Real-world retrospective study of KRAS mutations in advanced non-small cell lung cancer. Cancer. 2023;129(11):1662–1671. doi: 10.1002/cncr.34731 EDN: OQEYMZ
- Lin HM, Wu Y, Yin Y, et al. Real-world ALK testing trends in patients with advanced non-small-cell lung cancer in the United States. Clin Lung Cancer. 2023;24(1):e39–e49. doi: 10.1016/j.cllc.2022.09.010 EDN: OKLRIF
- Yuan H, Zou Z, Hao X, et al. A real-world study: therapeutic outcomes of ROS1-positive advanced NSCLC. Thorac Cancer. 2025;16(9):e70086. doi: 10.1111/1759-7714.70086
- Papavassiliou KA, Sofianidi AA, Gogou VA, et al. P53 and Rb aberrations in small cell lung cancer. Int J Mol Sci. 2024;25(5):2479. doi: 10.3390/ijms25052479 EDN: LSBPUA
- Pelosof LC, Gerber DE. Paraneoplastic syndromes: an approach to diagnosis and treatment. Mayo Clin Proc. 2010;85(9):838–854. doi: 10.4065/mcp.2010.0099
- Hamilton G, Rath B, Stickler S. Significance of circulating tumor cells in lung cancer: a narrative review. Transl Lung Cancer Res. 2023;12(4):877–894. doi: 10.21037/tlcr-22-712 EDN: TNMTHA
- Брызгунова О.Е., Лактионов П.П. Формирование пула циркулирующих ДНК крови: источники, особенности строения и циркуляции // Биомедицинская химия. 2015. Т. 61, № 4. С. 409–426. [Bryzgunova OE, Laktionov PP. Generation of blood circulating dnas: sources, features of struction and circulation. Biomedical Chemistry. 2015;61(4):409–426]. doi: 10.18097/PBMC20156104409 EDN: UIJMTL
- Wang L, Dumenil C, Julié C, et al. Molecular characterization of circulating tumor cells in lung cancer: moving beyond enumeration. Oncotarget. 2017;8(65):109818–109835. doi: 10.18632/oncotarget.22651 EDN: YEBMGD
- Hou JM, Krebs MG, Lancashire L, et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol. 2012;30(6):525–532. doi: 10.1200/JCO.2010.33.3716
- Hou JM, Greystoke A, Lancashire L, et al. Evaluation of circulating tumor cells and serological cell death biomarkers in small cell lung cancer patients undergoing chemotherapy. Am J Pathol. 2009;175(2):808–816. doi: 10.2353/ajpath.2009.090078
- Devriese LA, Bosma AJ, van de Heuvel MM, et al. Circulating tumor cell detection in advanced non-small cell lung cancer patients by multi-marker QPCR analysis. Lung Cancer. 2012;75(2):242–247. doi: 10.1016/j.lungcan.2011.07.003
- Wu C, Hao H, Li L, et al. Preliminary investigation of the clinical significance of detecting circulating tumor cells enriched from lung cancer patients. J Thorac Oncol. 2009;4(1):30–36. doi: 10.1097/JTO.0b013e3181914125
- O’Shannessy DJ, Davis DW, Anderes K, Somers EB. Isolation of circulating tumor cells from multiple epithelial cancers with ApoStream® for detecting (or monitoring) the expression of folate receptor alpha. Biomark Insights. 2016;11:7–18. doi: 10.4137/BMI.S35075
- Vona G, Sabile A, Louha M, et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol. 2000;156(1):57–63. doi: 10.1016/S0002-9440(10)64706-2
- Brägelmann J, Böhm S, Guthrie MR, et al. Family matters: how MYC family oncogenes impact small cell lung cancer. Cell Cycle. 2017;16(16):1489–1498. doi: 10.1080/15384101.2017.1339849 EDN: YHVLWD
- Dammert MA, Brägelmann J, Olsen RR, et al. MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nat Commun. 2019;10(1):3485. doi: 10.1038/s41467-019-11371-x EDN: EMKAMU
- Peifer M, Fernández-Cuesta L, Sos ML, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44(10):1104–1110. doi: 10.1038/ng.2396
- Rudin CM, Durinck S, Stawiski EW, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet. 2012;44(10):1111–1116. doi: 10.1038/ng.2405
- Bass AJ, Watanabe H, Mermel CH, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238–1242. doi: 10.1038/ng.465
- Ramos AH, Dutt A, Mermel C, et al. Amplification of chromosomal segment 4q12 in non-small cell lung cancer. Cancer Biol Ther. 2009;8(21):2042–2050. doi: 10.4161/cbt.8.21.9764
- Rekhtman N, Paik PK, Arcila ME, et al. Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clin Cancer Res. 2012;18(4):1167–1176. doi: 10.1158/1078-0432.CCR-11-2109 EDN: PLFQRF
- Jibiki T, Nishimura H, Sengoku S, Kodama K. Regulations, open data and healthcare innovation: a case of MSK-IMPACT and its implications for better cancer care. Cancers (Basel). 2021;13(14):3448. doi: 10.3390/cancers13143448 EDN: XJYAIR
- De Alves RC, Meurer RT, Roehe AV. MYC amplification is associated with poor survival in small cell lung cancer: a chromogenic in situ hybridization study. J Cancer Res Clin Oncol. 2014;140(12):2021–2025. doi: 10.1007/s00432-014-1769-1 EDN: IVJKOC
- Wali A. FHIT: doubts are clear now. Sci World J. 2010;10:1142–1151. doi: 10.1100/tsw.2010.110
- Karachaliou N, Rosell R, Viteri S. The role of SOX2 in small cell lung cancer, lung adenocarcinoma and squamous cell carcinoma of the lung. Transl Lung Cancer Res. 2013;2(3):172-179. doi: 10.3978/j.issn.2218-6751.2013.01.01
- Ruiz-Patiño A, Castro CD, Ricaurte LM, et al. EGFR amplification and sensitizing mutations correlate with survival in lung adenocarcinoma patients treated with erlotinib (MutP-CLICaP). Targ Oncol. 2018;13(5):621–629. doi: 10.1007/s11523-018-0594-x EDN: MPQGSJ
- Yang M, Mandal E, Liu FX, et al. Non-small cell lung cancer with MET amplification: review of epidemiology, associated disease characteristics, testing procedures, burden, and treatments. Front Oncol. 2024;13:1241402. doi: 10.3389/fonc.2023.1241402 EDN: VJJBZH
- Chen Y, Huang Y, Gao X, et al. CCND1 amplification contributes to immunosuppression and is associated with a poor prognosis to immune checkpoint inhibitors in solid tumors. Front Immunol. 2020;11:1620. doi: 10.3389/fimmu.2020.01620 EDN: FYKKBZ
- Wang S, Lai JC, Li Y, et al. Loss of CDKN2A enhances the efficacy of immunotherapy in EGFR-mutant non-small cell lung cancer. Cancer Res. 2025;85(3):585–601. doi: 10.1158/0008-5472.CAN-24-1817 EDN: VORDYW
- Rolfo C, Mack P, Scagliotti GV, et al. Liquid biopsy for advanced NSCLC: a consensus statement from the international association for the study of lung cancer. J Thorac Oncol. 2021;16(10):1647–1662. doi: 10.1016/j.jtho.2021.06.017 EDN: VCZCQW
- Брызгунова О.Е., Лактионов П.П. Современные методы исследования метилирования внеклеточных ДНК // Молекулярная биология. 2017. Т. 51, № 2. С. 195–214. [Bryzgunova OE, Laktionov PP. Current methods of extracellular DNA methylation analysis. Molecular Biology. 2017;51(2):195–214]. doi: 10.7868/S0026898417010074 EDN: VXNTAJ
- Nunes SP, Diniz F, Moreira-Barbosa C, et al. Subtyping lung cancer using DNA methylation in liquid biopsies. J Clin Med. 2019;8(9):1500. doi: 10.3390/jcm8091500
- Toyooka S, Toyooka KO, Maruyama R, et al. DNA methylation profiles of lung tumors. Mol Cancer Ther. 2001;1(1):61–67.
- Heeke S, Gay CM, Estecio MR, et al. Tumor- and circulating-free DNA methylation identifies clinically relevant small cell lung cancer subtypes. Cancer Cell. 2024;42(2):225–237.e5. doi: 10.1016/j.ccell.2024.01.001 EDN: DOXQPA
- Poirier JT, Gardner EE, Connis N, et al. DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene. 2015;34(48):5869–5878. doi: 10.1038/onc.2015.38 EDN: VFAHJH
- Walter K, Holcomb T, Januario T, et al. DNA methylation profiling defines clinically relevant biological subsets of non-small cell lung cancer. Clin Cancer Res. 2012;18(8):2360–2373. doi: 10.1158/1078-0432.CCR-11-2635-T EDN: YCPGLL
- Gao X, Jia M, Zhang Y, et al. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clin Epigenetics. 2015;7(1):113. doi: 10.1186/s13148-015-0148-3 EDN: ZLFZQF
- Locke WJ, Guanzon D, Ma C, et al. DNA methylation cancer biomarkers: translation to the clinic. Front Genet. 2019;10:1150. doi: 10.3389/fgene.2019.01150 EDN: NLPPCO
- Cui S, Ye L, Wang H, et al. Use of superARMS EGFR mutation detection kit to detect EGFR in plasma cell-free DNA of patients with lung adenocarcinoma. Clin Lung Cancer. 2018;19(3):e313–e322. doi: 10.1016/j.cllc.2017.12.009
- Claus J, de Smet D, Breyne J, et al. Patient-centric thresholding of Cobas® EGFR mutation Test v2 for surveillance of EGFR-mutated metastatic non-small cell lung cancer. Sci Rep. 2024;14(1):18191. doi: 10.1038/s41598-024-68350-6 EDN: HRXGJZ
- Zhang Q, Zheng K, Gao Y, et al. Plasma exosomal miR-1290 and miR-29c-3p as diagnostic biomarkers for lung cancer. Heliyon. 2023;9(10):e21059. doi: 10.1016/j.heliyon.2023.e21059 EDN: PHAFOU
- Poroyko V, Mirzapoiazova T, Nam A, et al. Exosomal miRNAs species in the blood of small cell and non-small cell lung cancer patients. Oncotarget. 2018;9(28):19793–19806. doi: 10.18632/oncotarget.24857
- Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi: 10.1038/ncb1596
- Kumar MA, Baba SK, Sadida HQ, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1):27. doi: 10.1038/s41392-024-01735-1 EDN: EPOTHG
- Lin J, Wang Y, Zou YQ, et al. Differential miRNA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia. Tumour Biol. 2016;37(12):15835–15845. doi: 10.1007/s13277-016-5410-6 EDN: WARYQA
- Müller Bark J, Kulasinghe A, Amenábar JM, Punyadeera C. Exosomes in cancer. Adv Clin Chem. 2021;101:1–40. doi: 10.1016/bs.acc.2020.06.006 EDN: IBIWAZ
- Casagrande GM, Silva MO, Reis RM, Leal LF. Liquid biopsy for lung cancer: up-to-date and perspectives for screening programs. Int J Mol Sci. 2023;24(3):2505. doi: 10.3390/ijms24032505 EDN: NARGMH
- Коношенко М.Ю., Лактионов П.П., Ланцухай Ю.А., и др. Малоинвазивная диагностика рака легкого на основе анализа внеклеточной микроРНК крови // Успехи молекулярной онкологии. 2023. Т. 10, № 2. С. 78–89. [Konoshenko MYu, Laktionov PP, Lancuhaj YuA, et al. Cell-free plasma miRNAs analysis for low invasive lung cancer diagnostics. Advances Molecular Oncology. 2023;10(2):78–89]. doi: 10.17650/2313-805X-2023-10-2-78-89 EDN: FSUWHT
- Davenport ML, Kulkarni A, Wang J, et al. miRNA-31 is a genomic biomarker of molecular heterogeneity in lung adenocarcinoma. Cancer Res. 2021;81(7):1788–1800. doi: 10.1158/0008-5472.CAN-20-2769
- Du L, Schageman JJ, Subauste MC, et al. miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Mol Cancer Res. 2010;8(6):873–883. doi: 10.1186/1756-9966-29-75
- Gilad S, Lithwick-Yanai G, Barshack I, et al. Multicenter validation of a microRNA-based assay for diagnosing indeterminate thyroid nodules. J Mol Diagn. 2012;14(5):517–524. doi: 10.1016/j.jmoldx.2012.03.004
- Powrózek T, Krawczyk P, Kowalski DM, et al. Plasma circulating microRNA-944 and microRNA-3662 as potential histologic type-specific early lung cancer biomarkers. Transl Res. 2015;166(4):315–323. doi: 10.1016/j.trsl.2015.05.009
- Abdipourbozorgbaghi M, Vancura A, Radpour R, Haefliger S. Circulating miRNA panels as a novel non-invasive diagnostic, prognostic, and potential predictive biomarkers in non-small cell lung cancer (NSCLC). Br J Cancer. 2024;131(8):1350–1362. doi: 10.1038/s41416-024-02831-3 EDN: DLZGNR
- Molina R, Filella X, Augé JM. ProGRP: a new biomarker for small cell lung cancer. Clin Biochem. 2004;37(7):505–511. doi: 10.1016/j.clinbiochem.2004.05.007
- Isgrò MA, Bottoni P, Scatena R. Neuron-specific enolase as a biomarker: biochemical and clinical aspects. Adv Exp Med Biol. 2015;867:125–143. doi: 10.1007/978-94-017-7215-0_9
- Dhanurdhar Y, Jagaty SK, Subhankar S, Behera D. Diagnostic and prognostic significance of serum biomarkers: serum amyloid A and CYFRA 21-1 in lung cancer. Int J Appl Basic Med Res. 2023;13(2):89–94. doi: 10.4103/ijabmr.ijabmr_639_22
- Grunnet M, Sorensen JB. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer. 2012;76(2):138–143. doi: 10.1016/j.lungcan.2011.11.012
- Molina R, Auge JM, Escudero JM, et al. Mucins CA 125, CA 19.9, CA 15.3 and TAG-72.3 as tumor markers in patients with lung cancer: comparison with CYFRA 21-1, CEA, SCC and NSE. Tumour Biol. 2008;29(6):371–380. doi: 10.1159/000181180
- Bi H, Yin L, Fang W, et al. Association of CEA, NSE, CYFRA 21-1, SCC-Ag, and ProGRP with clinicopathological characteristics and chemotherapeutic outcomes of lung cancer. Lab Med. 2023;54(4):372–379. doi: 10.1093/labmed/lmac122 EDN: WNNQGG
- Zamay GS, Kolovskaya OS, Zukov RA, et al. Current and prospective protein biomarkers of lung cancer. Cancers (Basel). 2017;9(11):155. doi: 10.3390/cancers9110155 EDN: XNRJBS
- Sandfeld-Paulsen B, Jakobsen KR, Bæk R, et al. Exosomal proteins as diagnostic biomarkers in lung cancer. J Thorac Oncol. 2016;11(10):1701–1710. doi: 10.1016/j.jtho.2016.05.034
- Kondo K, Harada Y, Nakano M, et al. Identification of distinct N-glycosylation patterns on extracellular vesicles from small-cell and non-small-cell lung cancer cells. J Biol Chem. 2022;298(6):101950. doi: 10.1016/j.jbc.2022.101950 EDN: PZEZXF
- Papakonstantinou D, Roumeliotou A, Pantazaka E, et al. Integrative analysis of circulating tumor cells (CTCs) and exosomes from small-cell lung cancer (SCLC) patients: a comprehensive approach. Mol Oncol. 2025;19(7):2038–2055. doi: 10.1002/1878-0261.13765 EDN: SSRPXY
- Bao M, Huang Y, Lang Z, et al. Proteomic analysis of plasma exosomes in patients with non-small cell lung cancer. Transl Lung Cancer Res. 2022;11(7):1434–1452. doi: 10.21037/tlcr-22-467 EDN: TXPXHO
- Hu Q, Li K, Yang C, et al. The role of artificial intelligence based on PET/CT radiomics in NSCLC. Front Oncol. 2023;13:1133164. doi: 10.3389/fonc.2023.1133164
- Manafi-Farid R, Askari E, Shiri I, et al. [18F]FDG-PET/CT radiomics and artificial intelligence in lung cancer. Semin Nucl Med. 2022;52(6):759–780. doi: 10.1053/j.semnuclmed.2022.04.004 EDN: PWBTEU
- Safarian A, Mirshahvalad SA, Nasrollahi H, et al. Impact of [18F]FDG PET/CT radiomics and artificial intelligence in clinical decision making in lung cancer. Semin Nucl Med. 2025;55(2):156–166. doi: 10.1053/j.semnuclmed.2025.02.006 EDN: BILMAT
- Yang L, Xu P, Li M, et al. PET/CT radiomic features: a potential biomarker for EGFR mutation status and survival outcome prediction in NSCLC patients treated with TKIs. Front Oncol. 2022;12:894323. doi: 10.3389/fonc.2022.894323 EDN: LKPLSQ
- Guo Y, Song Q, Jiang M, et al. Histological subtypes classification of lung cancers on CT images using 3D deep learning and radiomics. Acad Radiol. 2021;28(9):e258–e266. doi: 10.1016/j.acra.2020.06.010 EDN: PVFKUC
- Shah RP, Selby HM, Mukherjee P, et al. Machine learning radiomics model for early identification of small-cell lung cancer on computed tomography scans. JCO Clin Cancer Inform. 2021;5:746–757. doi: 10.1200/CCI.21.00021 EDN: RVAUEI
- E L, Lu L, Li L, et al. Radiomics for classification of lung cancer histological subtypes based on nonenhanced computed tomography. Acad Radiol. 2019;26(9):1245–1252. doi: 10.1016/j.acra.2018.10.013
- Yang L, Yang J, Zhou X, et al. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients. Eur Radiol. 2019;29(5):2196–2206. doi: 10.1007/s00330-018-5770-y EDN: XDWKUS
- Saalberg Y, Wolff M. VOC breath biomarkers in lung cancer. Clin Chim Acta. 2016;459:5–9. doi: 10.1016/j.cca.2016.05.013
- Lv W, Shi W, Zhang Z, et al. Identification of volatile biomarkers for lung cancer from different histological sources: a comprehensive study. Anal Biochem. 2024;690:115527. doi: 10.1016/j.ab.2024.115527 EDN: WQNEIT
- Fan X, Zhong R, Liang H, et al. Exhaled VOC detection in lung cancer screening: a comprehensive meta-analysis. BMC Cancer. 2024;24(1):775. doi: 10.1186/s12885-024-12537-7 EDN: UHYNDS
- Jia Z, Zhang H, Ong CN, et al. Detection of lung cancer: concomitant volatile organic compounds and metabolomic profiling of six cancer cell lines. ACS Omega. 2018;3(5):5131–5140. doi: 10.1021/acsomega.7b02035
- Oguma T, Nagaoka T, Kurahashi M, et al. Clinical contributions of exhaled volatile organic compounds in the diagnosis of lung cancer. PLoS One. 2017;12(4):e0174802. doi: 10.1371/journal.pone.0174802
- Fuchs P, Loeseken C, Schubert JK, Miekisch W. Breath gas aldehydes as biomarkers of lung cancer. Int J Cancer. 2010;126(11):2663–2670. doi: 10.1002/ijc.24970 EDN: NYUUWF
- Steenhuis EG, Asmara OD, Kort S, et al. The electronic nose in lung cancer diagnostics: a systematic review and meta-analysis. ERJ Open Res. 2025;11(3):00723–2024. doi: 10.1183/23120541.00723-2024 EDN: QQRQLW
- Kort S, Tiggeloven MM, Brusse-Keizer M, et al. Multi-centre prospective study on diagnosing subtypes of lung cancer by exhaled-breath analysis. Lung Cancer. 2018;125:223–229. doi: 10.1016/j.lungcan.2018.09.022
- Monedeiro F, Monedeiro-Milanowski M, Ratiu IA, et al. Needle trap device-GC-MS for characterization of lung diseases based on breath VOC profiles. Molecules. 2021;26(6):1789. doi: 10.3390/molecules26061789 EDN: RVIHQL
- Amann A, Costello BD, Miekisch W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res. 2014;8(3):034001. doi: 10.1088/1752-7155/8/3/034001 EDN: YARLEG
- Rondanelli M, Perdoni F, Infantino V, et al. Volatile organic compounds as biomarkers of gastrointestinal diseases and nutritional status. J Anal Methods Chem. 2019;2019:7247802. doi: 10.1155/2019/7247802
Supplementary files




