Дифференциальная диагностика немелкоклеточного и мелкоклеточного рака лёгкого: современные подходы и перспективные технологии
- Авторы: Коношенко М.Ю.1,2, Шутко Е.В.1,2, Брызгунова О.Е.1,2, Илющенко А.А.2, Данилова Я.М.2, Горбунков С.Д.2, Зыков К.А.2, Лактионов П.П.1,2
-
Учреждения:
- Институт химической биологии и фундаментальной медицины
- Научно-исследовательский институт пульмонологии Федерального медико-биологического агентства
- Выпуск: Том 16, № 3 (2025)
- Страницы: 71-87
- Раздел: Научные обзоры
- URL: https://journals.rcsi.science/clinpractice/article/view/352032
- DOI: https://doi.org/10.17816/clinpract688161
- EDN: https://elibrary.ru/HVADZZ
- ID: 352032
Цитировать
Аннотация
Рак лёгкого представляет собой гетерогенную группу злокачественных новообразований, среди которых выделяют две основные формы — немелкоклеточный и мелкоклеточный рак лёгкого. Эти подтипы существенно различаются по гистологическим, молекулярно-генетическим и клиническим характеристикам, что определяет необходимость точной дифференциальной диагностики для выбора оптимальной тактики лечения. В обзоре рассматриваются современные методы диагностики немелкоклеточного и мелкоклеточного рака лёгкого, включая инструментальную диагностику, гистологическое и иммуногистохимическое исследование. Особое внимание уделено плюсам и минусам перспективных не- и малоинвазивных подходов, таких как анализ циркулирующих опухолевых клеток, внеклеточной ДНК, микроРНК, белковых маркеров, летучих органических соединений, современной медицинской визуализации (радиомики). Несмотря на значительные успехи в разработке новых диагностических подходов, сохраняются проблемы, связанные с гетерогенностью опухолей, ограниченной доступностью материала мелкоклеточного рака лёгкого и необходимостью стандартизации новых методов. Перспективным направлением представляется интеграция мультимодальных подходов, сочетающих жидкостную биопсию, радиомику и алгоритмы машинного обучения, что может повысить точность диагностики и оптимизировать персонализированное лечение пациентов с различными подтипами рака лёгкого.
Полный текст
Открыть статью на сайте журналаОб авторах
Мария Юрьевна Коношенко
Институт химической биологии и фундаментальной медицины; Научно-исследовательский институт пульмонологии Федерального медико-биологического агентства
Email: lacyjewelrymk@gmail.com
ORCID iD: 0000-0003-2925-9350
SPIN-код: 9374-8489
канд. биол. наук
Россия, Новосибирск; МоскваЕкатерина Викторовна Шутко
Институт химической биологии и фундаментальной медицины; Научно-исследовательский институт пульмонологии Федерального медико-биологического агентства
Автор, ответственный за переписку.
Email: katshutko@gmail.com
ORCID iD: 0009-0004-3004-8969
SPIN-код: 3627-2494
Россия, 630090, Новосибирск, пр-кт Академика Лаврентьева, д. 8; Москва
Ольга Евгеньевна Брызгунова
Институт химической биологии и фундаментальной медицины; Научно-исследовательский институт пульмонологии Федерального медико-биологического агентства
Email: olga.bryzgunova@niboch.nsc.ru
ORCID iD: 0000-0003-3433-7261
SPIN-код: 9752-3241
канд. биол. наук
Россия, Новосибирск; МоскваАнтонина Александровна Илющенко
Научно-исследовательский институт пульмонологии Федерального медико-биологического агентства
Email: Kdlmedwans@gmail.com
ORCID iD: 0009-0003-9068-5401
Россия, Москва
Ярослава Михайловна Данилова
Научно-исследовательский институт пульмонологии Федерального медико-биологического агентства
Email: yaroslava.danilova.82@mail.ru
ORCID iD: 0009-0003-6679-9185
Россия, Москва
Станислав Дмитриевич Горбунков
Научно-исследовательский институт пульмонологии Федерального медико-биологического агентства
Email: sdgorbunkov@mail.ru
ORCID iD: 0000-0002-8899-4294
SPIN-код: 7473-0530
д-р мед. наук, доцент
Россия, МоскваКирилл Алексеевич Зыков
Научно-исследовательский институт пульмонологии Федерального медико-биологического агентства
Email: kirillaz@inbox.ru
ORCID iD: 0000-0003-3385-2632
SPIN-код: 6269-7990
д-р мед. наук, чл.-корр. РАН, профессор РАН
Россия, МоскваПавел Петрович Лактионов
Институт химической биологии и фундаментальной медицины; Научно-исследовательский институт пульмонологии Федерального медико-биологического агентства
Email: lakt@1bio.ru
ORCID iD: 0000-0002-0866-0252
SPIN-код: 4114-3170
канд. биол. наук
Россия, Новосибирск; МоскваСписок литературы
- International Agency for Research on Cancer [Internet]. WHO Classification of Tumours Editorial Board. 5th ed. Vol. 5. Thoracic tumours. Lyon; 2021. 565 p. ISBN: 13.978-92-832-4506-3
- Клинические рекомендации. Злокачественное новообразование бронхов и лёгкого. Кодирование по Международной статистической классификации болезней и проблем, связанных со здоровьем: C34. Ассоциация онкологов России, Российское общество клинической онкологии, 2022. [Clinical recommendations. Malignant neoplasm of the bronchi and lungs. Coding according to the International Statistical Classification of Diseases and Related Health Problems: C34. Association of Oncologists of Russia, Russian Society of Clinical Oncology; 2022. (In Russ.)]. Режим доступа: https://cr.minzdrav.gov.ru/preview-cr/30_4 Дата обращения: 15.07.2025.
- Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–263. doi: 10.3322/caac.21834 EDN: FRJDQH
- Siegel RL, Miller KD, Fuchs HE, Jemal A. Erratum to “Cancer statistics, 2021”. CA Cancer J Clin. 2021;71(4):359. doi: 10.3322/caac.21669 EDN: CQUTZD
- Lu DN, Jiang Y, Zhang WC, et al. Lung cancer incidence in both sexes across global areas: data from 1978 to 2017 and predictions up to 2035. BMC Pulm Med. 2025;25(1):281. doi: 10.1186/s12890-025-03748-0
- GBD 2019 Tobacco Collaborators. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet. 2021;397(10292):2337–2360. doi: 10.1016/S0140-6736(21)01282-4
- Ha SY, Choi SJ, Cho JH, et al. Lung cancer in never-smoker Asian females is driven by oncogenic mutations, most often involving EGFR. Oncotarget. 2015;6(7):5465–5474. doi: 10.18632/oncotarget.2925
- Islami F, Goding Sauer A, Miller KD, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin. 2018;68(1):31–54. doi: 10.3322/caac.21440 EDN: YDXVDN
- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
- Злокачественные новообразования в России в 2022 году / под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой, И.В. Лисичниковой. Москва, 2023. 275 с. [Kaprin AD, Starinsky VV, Shakhzadova AO, Lisichnikova IV, editors. Malignant neoplasms in Russia in 2022. Moscow; 2023. 275 p. (In Russ.)]
- Zhang Y, Vaccarella S, Morgan E, et al. Global variations in lung cancer incidence by histological subtype in 2020. Lancet Oncol. 2023;24(11):1206–1218. doi: 10.1016/S1470-2045(23)00444-8
- Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. Int J Mol Sci. 2021;22(16):8661. doi: 10.3390/ijms22168661
- ESMO Рекомендации для пациентов. Немелкоклеточный рак лёгкого (НМРЛ). 2019. 65 с. [ESMO Recommendations for patients. Non-small cell lung cancer (NSCLC). 2019. 65 p. (In Russ.)]. Режим доступа: https://www.rosoncoweb.ru/patients/guidelines/NSCLC/ Дата обращения: 15.07.2025.
- Nanavaty P, Alvarez MS, Alberts WM. Lung cancer screening: advantages, controversies, and applications. Cancer Control. 2014;21(1):9–14. doi: 10.1177/107327481402100102
- Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. doi: 10.3322/caac.21763 EDN: SUTYDV
- George J, Lim JS, Jang SJ, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47–53. doi: 10.1038/nature14664 EDN: UOSZYD
- Melosky B, Kambartel K, Häntschel M, et al. Worldwide prevalence of epidermal growth factor receptor mutations in non-small cell lung cancer: a meta-analysis. Mol Diagn Ther. 2022;26(1):7–18. doi: 10.1007/s40291-021-00563-1 EDN: IBRURO
- Bironzo P, Cani M, Jacobs F, et al. Real-world retrospective study of KRAS mutations in advanced non-small cell lung cancer. Cancer. 2023;129(11):1662–1671. doi: 10.1002/cncr.34731 EDN: OQEYMZ
- Lin HM, Wu Y, Yin Y, et al. Real-world ALK testing trends in patients with advanced non-small-cell lung cancer in the United States. Clin Lung Cancer. 2023;24(1):e39–e49. doi: 10.1016/j.cllc.2022.09.010 EDN: OKLRIF
- Yuan H, Zou Z, Hao X, et al. A real-world study: therapeutic outcomes of ROS1-positive advanced NSCLC. Thorac Cancer. 2025;16(9):e70086. doi: 10.1111/1759-7714.70086
- Papavassiliou KA, Sofianidi AA, Gogou VA, et al. P53 and Rb aberrations in small cell lung cancer. Int J Mol Sci. 2024;25(5):2479. doi: 10.3390/ijms25052479 EDN: LSBPUA
- Pelosof LC, Gerber DE. Paraneoplastic syndromes: an approach to diagnosis and treatment. Mayo Clin Proc. 2010;85(9):838–854. doi: 10.4065/mcp.2010.0099
- Hamilton G, Rath B, Stickler S. Significance of circulating tumor cells in lung cancer: a narrative review. Transl Lung Cancer Res. 2023;12(4):877–894. doi: 10.21037/tlcr-22-712 EDN: TNMTHA
- Брызгунова О.Е., Лактионов П.П. Формирование пула циркулирующих ДНК крови: источники, особенности строения и циркуляции // Биомедицинская химия. 2015. Т. 61, № 4. С. 409–426. [Bryzgunova OE, Laktionov PP. Generation of blood circulating dnas: sources, features of struction and circulation. Biomedical Chemistry. 2015;61(4):409–426]. doi: 10.18097/PBMC20156104409 EDN: UIJMTL
- Wang L, Dumenil C, Julié C, et al. Molecular characterization of circulating tumor cells in lung cancer: moving beyond enumeration. Oncotarget. 2017;8(65):109818–109835. doi: 10.18632/oncotarget.22651 EDN: YEBMGD
- Hou JM, Krebs MG, Lancashire L, et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol. 2012;30(6):525–532. doi: 10.1200/JCO.2010.33.3716
- Hou JM, Greystoke A, Lancashire L, et al. Evaluation of circulating tumor cells and serological cell death biomarkers in small cell lung cancer patients undergoing chemotherapy. Am J Pathol. 2009;175(2):808–816. doi: 10.2353/ajpath.2009.090078
- Devriese LA, Bosma AJ, van de Heuvel MM, et al. Circulating tumor cell detection in advanced non-small cell lung cancer patients by multi-marker QPCR analysis. Lung Cancer. 2012;75(2):242–247. doi: 10.1016/j.lungcan.2011.07.003
- Wu C, Hao H, Li L, et al. Preliminary investigation of the clinical significance of detecting circulating tumor cells enriched from lung cancer patients. J Thorac Oncol. 2009;4(1):30–36. doi: 10.1097/JTO.0b013e3181914125
- O’Shannessy DJ, Davis DW, Anderes K, Somers EB. Isolation of circulating tumor cells from multiple epithelial cancers with ApoStream® for detecting (or monitoring) the expression of folate receptor alpha. Biomark Insights. 2016;11:7–18. doi: 10.4137/BMI.S35075
- Vona G, Sabile A, Louha M, et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol. 2000;156(1):57–63. doi: 10.1016/S0002-9440(10)64706-2
- Brägelmann J, Böhm S, Guthrie MR, et al. Family matters: how MYC family oncogenes impact small cell lung cancer. Cell Cycle. 2017;16(16):1489–1498. doi: 10.1080/15384101.2017.1339849 EDN: YHVLWD
- Dammert MA, Brägelmann J, Olsen RR, et al. MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nat Commun. 2019;10(1):3485. doi: 10.1038/s41467-019-11371-x EDN: EMKAMU
- Peifer M, Fernández-Cuesta L, Sos ML, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44(10):1104–1110. doi: 10.1038/ng.2396
- Rudin CM, Durinck S, Stawiski EW, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet. 2012;44(10):1111–1116. doi: 10.1038/ng.2405
- Bass AJ, Watanabe H, Mermel CH, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238–1242. doi: 10.1038/ng.465
- Ramos AH, Dutt A, Mermel C, et al. Amplification of chromosomal segment 4q12 in non-small cell lung cancer. Cancer Biol Ther. 2009;8(21):2042–2050. doi: 10.4161/cbt.8.21.9764
- Rekhtman N, Paik PK, Arcila ME, et al. Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clin Cancer Res. 2012;18(4):1167–1176. doi: 10.1158/1078-0432.CCR-11-2109 EDN: PLFQRF
- Jibiki T, Nishimura H, Sengoku S, Kodama K. Regulations, open data and healthcare innovation: a case of MSK-IMPACT and its implications for better cancer care. Cancers (Basel). 2021;13(14):3448. doi: 10.3390/cancers13143448 EDN: XJYAIR
- De Alves RC, Meurer RT, Roehe AV. MYC amplification is associated with poor survival in small cell lung cancer: a chromogenic in situ hybridization study. J Cancer Res Clin Oncol. 2014;140(12):2021–2025. doi: 10.1007/s00432-014-1769-1 EDN: IVJKOC
- Wali A. FHIT: doubts are clear now. Sci World J. 2010;10:1142–1151. doi: 10.1100/tsw.2010.110
- Karachaliou N, Rosell R, Viteri S. The role of SOX2 in small cell lung cancer, lung adenocarcinoma and squamous cell carcinoma of the lung. Transl Lung Cancer Res. 2013;2(3):172-179. doi: 10.3978/j.issn.2218-6751.2013.01.01
- Ruiz-Patiño A, Castro CD, Ricaurte LM, et al. EGFR amplification and sensitizing mutations correlate with survival in lung adenocarcinoma patients treated with erlotinib (MutP-CLICaP). Targ Oncol. 2018;13(5):621–629. doi: 10.1007/s11523-018-0594-x EDN: MPQGSJ
- Yang M, Mandal E, Liu FX, et al. Non-small cell lung cancer with MET amplification: review of epidemiology, associated disease characteristics, testing procedures, burden, and treatments. Front Oncol. 2024;13:1241402. doi: 10.3389/fonc.2023.1241402 EDN: VJJBZH
- Chen Y, Huang Y, Gao X, et al. CCND1 amplification contributes to immunosuppression and is associated with a poor prognosis to immune checkpoint inhibitors in solid tumors. Front Immunol. 2020;11:1620. doi: 10.3389/fimmu.2020.01620 EDN: FYKKBZ
- Wang S, Lai JC, Li Y, et al. Loss of CDKN2A enhances the efficacy of immunotherapy in EGFR-mutant non-small cell lung cancer. Cancer Res. 2025;85(3):585–601. doi: 10.1158/0008-5472.CAN-24-1817 EDN: VORDYW
- Rolfo C, Mack P, Scagliotti GV, et al. Liquid biopsy for advanced NSCLC: a consensus statement from the international association for the study of lung cancer. J Thorac Oncol. 2021;16(10):1647–1662. doi: 10.1016/j.jtho.2021.06.017 EDN: VCZCQW
- Брызгунова О.Е., Лактионов П.П. Современные методы исследования метилирования внеклеточных ДНК // Молекулярная биология. 2017. Т. 51, № 2. С. 195–214. [Bryzgunova OE, Laktionov PP. Current methods of extracellular DNA methylation analysis. Molecular Biology. 2017;51(2):195–214]. doi: 10.7868/S0026898417010074 EDN: VXNTAJ
- Nunes SP, Diniz F, Moreira-Barbosa C, et al. Subtyping lung cancer using DNA methylation in liquid biopsies. J Clin Med. 2019;8(9):1500. doi: 10.3390/jcm8091500
- Toyooka S, Toyooka KO, Maruyama R, et al. DNA methylation profiles of lung tumors. Mol Cancer Ther. 2001;1(1):61–67.
- Heeke S, Gay CM, Estecio MR, et al. Tumor- and circulating-free DNA methylation identifies clinically relevant small cell lung cancer subtypes. Cancer Cell. 2024;42(2):225–237.e5. doi: 10.1016/j.ccell.2024.01.001 EDN: DOXQPA
- Poirier JT, Gardner EE, Connis N, et al. DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene. 2015;34(48):5869–5878. doi: 10.1038/onc.2015.38 EDN: VFAHJH
- Walter K, Holcomb T, Januario T, et al. DNA methylation profiling defines clinically relevant biological subsets of non-small cell lung cancer. Clin Cancer Res. 2012;18(8):2360–2373. doi: 10.1158/1078-0432.CCR-11-2635-T EDN: YCPGLL
- Gao X, Jia M, Zhang Y, et al. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clin Epigenetics. 2015;7(1):113. doi: 10.1186/s13148-015-0148-3 EDN: ZLFZQF
- Locke WJ, Guanzon D, Ma C, et al. DNA methylation cancer biomarkers: translation to the clinic. Front Genet. 2019;10:1150. doi: 10.3389/fgene.2019.01150 EDN: NLPPCO
- Cui S, Ye L, Wang H, et al. Use of superARMS EGFR mutation detection kit to detect EGFR in plasma cell-free DNA of patients with lung adenocarcinoma. Clin Lung Cancer. 2018;19(3):e313–e322. doi: 10.1016/j.cllc.2017.12.009
- Claus J, de Smet D, Breyne J, et al. Patient-centric thresholding of Cobas® EGFR mutation Test v2 for surveillance of EGFR-mutated metastatic non-small cell lung cancer. Sci Rep. 2024;14(1):18191. doi: 10.1038/s41598-024-68350-6 EDN: HRXGJZ
- Zhang Q, Zheng K, Gao Y, et al. Plasma exosomal miR-1290 and miR-29c-3p as diagnostic biomarkers for lung cancer. Heliyon. 2023;9(10):e21059. doi: 10.1016/j.heliyon.2023.e21059 EDN: PHAFOU
- Poroyko V, Mirzapoiazova T, Nam A, et al. Exosomal miRNAs species in the blood of small cell and non-small cell lung cancer patients. Oncotarget. 2018;9(28):19793–19806. doi: 10.18632/oncotarget.24857
- Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi: 10.1038/ncb1596
- Kumar MA, Baba SK, Sadida HQ, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1):27. doi: 10.1038/s41392-024-01735-1 EDN: EPOTHG
- Lin J, Wang Y, Zou YQ, et al. Differential miRNA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia. Tumour Biol. 2016;37(12):15835–15845. doi: 10.1007/s13277-016-5410-6 EDN: WARYQA
- Müller Bark J, Kulasinghe A, Amenábar JM, Punyadeera C. Exosomes in cancer. Adv Clin Chem. 2021;101:1–40. doi: 10.1016/bs.acc.2020.06.006 EDN: IBIWAZ
- Casagrande GM, Silva MO, Reis RM, Leal LF. Liquid biopsy for lung cancer: up-to-date and perspectives for screening programs. Int J Mol Sci. 2023;24(3):2505. doi: 10.3390/ijms24032505 EDN: NARGMH
- Коношенко М.Ю., Лактионов П.П., Ланцухай Ю.А., и др. Малоинвазивная диагностика рака легкого на основе анализа внеклеточной микроРНК крови // Успехи молекулярной онкологии. 2023. Т. 10, № 2. С. 78–89. [Konoshenko MYu, Laktionov PP, Lancuhaj YuA, et al. Cell-free plasma miRNAs analysis for low invasive lung cancer diagnostics. Advances Molecular Oncology. 2023;10(2):78–89]. doi: 10.17650/2313-805X-2023-10-2-78-89 EDN: FSUWHT
- Davenport ML, Kulkarni A, Wang J, et al. miRNA-31 is a genomic biomarker of molecular heterogeneity in lung adenocarcinoma. Cancer Res. 2021;81(7):1788–1800. doi: 10.1158/0008-5472.CAN-20-2769
- Du L, Schageman JJ, Subauste MC, et al. miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Mol Cancer Res. 2010;8(6):873–883. doi: 10.1186/1756-9966-29-75
- Gilad S, Lithwick-Yanai G, Barshack I, et al. Multicenter validation of a microRNA-based assay for diagnosing indeterminate thyroid nodules. J Mol Diagn. 2012;14(5):517–524. doi: 10.1016/j.jmoldx.2012.03.004
- Powrózek T, Krawczyk P, Kowalski DM, et al. Plasma circulating microRNA-944 and microRNA-3662 as potential histologic type-specific early lung cancer biomarkers. Transl Res. 2015;166(4):315–323. doi: 10.1016/j.trsl.2015.05.009
- Abdipourbozorgbaghi M, Vancura A, Radpour R, Haefliger S. Circulating miRNA panels as a novel non-invasive diagnostic, prognostic, and potential predictive biomarkers in non-small cell lung cancer (NSCLC). Br J Cancer. 2024;131(8):1350–1362. doi: 10.1038/s41416-024-02831-3 EDN: DLZGNR
- Molina R, Filella X, Augé JM. ProGRP: a new biomarker for small cell lung cancer. Clin Biochem. 2004;37(7):505–511. doi: 10.1016/j.clinbiochem.2004.05.007
- Isgrò MA, Bottoni P, Scatena R. Neuron-specific enolase as a biomarker: biochemical and clinical aspects. Adv Exp Med Biol. 2015;867:125–143. doi: 10.1007/978-94-017-7215-0_9
- Dhanurdhar Y, Jagaty SK, Subhankar S, Behera D. Diagnostic and prognostic significance of serum biomarkers: serum amyloid A and CYFRA 21-1 in lung cancer. Int J Appl Basic Med Res. 2023;13(2):89–94. doi: 10.4103/ijabmr.ijabmr_639_22
- Grunnet M, Sorensen JB. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer. 2012;76(2):138–143. doi: 10.1016/j.lungcan.2011.11.012
- Molina R, Auge JM, Escudero JM, et al. Mucins CA 125, CA 19.9, CA 15.3 and TAG-72.3 as tumor markers in patients with lung cancer: comparison with CYFRA 21-1, CEA, SCC and NSE. Tumour Biol. 2008;29(6):371–380. doi: 10.1159/000181180
- Bi H, Yin L, Fang W, et al. Association of CEA, NSE, CYFRA 21-1, SCC-Ag, and ProGRP with clinicopathological characteristics and chemotherapeutic outcomes of lung cancer. Lab Med. 2023;54(4):372–379. doi: 10.1093/labmed/lmac122 EDN: WNNQGG
- Zamay GS, Kolovskaya OS, Zukov RA, et al. Current and prospective protein biomarkers of lung cancer. Cancers (Basel). 2017;9(11):155. doi: 10.3390/cancers9110155 EDN: XNRJBS
- Sandfeld-Paulsen B, Jakobsen KR, Bæk R, et al. Exosomal proteins as diagnostic biomarkers in lung cancer. J Thorac Oncol. 2016;11(10):1701–1710. doi: 10.1016/j.jtho.2016.05.034
- Kondo K, Harada Y, Nakano M, et al. Identification of distinct N-glycosylation patterns on extracellular vesicles from small-cell and non-small-cell lung cancer cells. J Biol Chem. 2022;298(6):101950. doi: 10.1016/j.jbc.2022.101950 EDN: PZEZXF
- Papakonstantinou D, Roumeliotou A, Pantazaka E, et al. Integrative analysis of circulating tumor cells (CTCs) and exosomes from small-cell lung cancer (SCLC) patients: a comprehensive approach. Mol Oncol. 2025;19(7):2038–2055. doi: 10.1002/1878-0261.13765 EDN: SSRPXY
- Bao M, Huang Y, Lang Z, et al. Proteomic analysis of plasma exosomes in patients with non-small cell lung cancer. Transl Lung Cancer Res. 2022;11(7):1434–1452. doi: 10.21037/tlcr-22-467 EDN: TXPXHO
- Hu Q, Li K, Yang C, et al. The role of artificial intelligence based on PET/CT radiomics in NSCLC. Front Oncol. 2023;13:1133164. doi: 10.3389/fonc.2023.1133164
- Manafi-Farid R, Askari E, Shiri I, et al. [18F]FDG-PET/CT radiomics and artificial intelligence in lung cancer. Semin Nucl Med. 2022;52(6):759–780. doi: 10.1053/j.semnuclmed.2022.04.004 EDN: PWBTEU
- Safarian A, Mirshahvalad SA, Nasrollahi H, et al. Impact of [18F]FDG PET/CT radiomics and artificial intelligence in clinical decision making in lung cancer. Semin Nucl Med. 2025;55(2):156–166. doi: 10.1053/j.semnuclmed.2025.02.006 EDN: BILMAT
- Yang L, Xu P, Li M, et al. PET/CT radiomic features: a potential biomarker for EGFR mutation status and survival outcome prediction in NSCLC patients treated with TKIs. Front Oncol. 2022;12:894323. doi: 10.3389/fonc.2022.894323 EDN: LKPLSQ
- Guo Y, Song Q, Jiang M, et al. Histological subtypes classification of lung cancers on CT images using 3D deep learning and radiomics. Acad Radiol. 2021;28(9):e258–e266. doi: 10.1016/j.acra.2020.06.010 EDN: PVFKUC
- Shah RP, Selby HM, Mukherjee P, et al. Machine learning radiomics model for early identification of small-cell lung cancer on computed tomography scans. JCO Clin Cancer Inform. 2021;5:746–757. doi: 10.1200/CCI.21.00021 EDN: RVAUEI
- E L, Lu L, Li L, et al. Radiomics for classification of lung cancer histological subtypes based on nonenhanced computed tomography. Acad Radiol. 2019;26(9):1245–1252. doi: 10.1016/j.acra.2018.10.013
- Yang L, Yang J, Zhou X, et al. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients. Eur Radiol. 2019;29(5):2196–2206. doi: 10.1007/s00330-018-5770-y EDN: XDWKUS
- Saalberg Y, Wolff M. VOC breath biomarkers in lung cancer. Clin Chim Acta. 2016;459:5–9. doi: 10.1016/j.cca.2016.05.013
- Lv W, Shi W, Zhang Z, et al. Identification of volatile biomarkers for lung cancer from different histological sources: a comprehensive study. Anal Biochem. 2024;690:115527. doi: 10.1016/j.ab.2024.115527 EDN: WQNEIT
- Fan X, Zhong R, Liang H, et al. Exhaled VOC detection in lung cancer screening: a comprehensive meta-analysis. BMC Cancer. 2024;24(1):775. doi: 10.1186/s12885-024-12537-7 EDN: UHYNDS
- Jia Z, Zhang H, Ong CN, et al. Detection of lung cancer: concomitant volatile organic compounds and metabolomic profiling of six cancer cell lines. ACS Omega. 2018;3(5):5131–5140. doi: 10.1021/acsomega.7b02035
- Oguma T, Nagaoka T, Kurahashi M, et al. Clinical contributions of exhaled volatile organic compounds in the diagnosis of lung cancer. PLoS One. 2017;12(4):e0174802. doi: 10.1371/journal.pone.0174802
- Fuchs P, Loeseken C, Schubert JK, Miekisch W. Breath gas aldehydes as biomarkers of lung cancer. Int J Cancer. 2010;126(11):2663–2670. doi: 10.1002/ijc.24970 EDN: NYUUWF
- Steenhuis EG, Asmara OD, Kort S, et al. The electronic nose in lung cancer diagnostics: a systematic review and meta-analysis. ERJ Open Res. 2025;11(3):00723–2024. doi: 10.1183/23120541.00723-2024 EDN: QQRQLW
- Kort S, Tiggeloven MM, Brusse-Keizer M, et al. Multi-centre prospective study on diagnosing subtypes of lung cancer by exhaled-breath analysis. Lung Cancer. 2018;125:223–229. doi: 10.1016/j.lungcan.2018.09.022
- Monedeiro F, Monedeiro-Milanowski M, Ratiu IA, et al. Needle trap device-GC-MS for characterization of lung diseases based on breath VOC profiles. Molecules. 2021;26(6):1789. doi: 10.3390/molecules26061789 EDN: RVIHQL
- Amann A, Costello BD, Miekisch W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res. 2014;8(3):034001. doi: 10.1088/1752-7155/8/3/034001 EDN: YARLEG
- Rondanelli M, Perdoni F, Infantino V, et al. Volatile organic compounds as biomarkers of gastrointestinal diseases and nutritional status. J Anal Methods Chem. 2019;2019:7247802. doi: 10.1155/2019/7247802
Дополнительные файлы




