Biomarkers of acute myocardial infarction: diagnostic and prognostic value. Part 1

Cover Page

Cite item

Abstract

The morbidity and mortality rates for acute myocardial infarction (AMI) have been growing rapidly in the recent years, causing a significant socio-economic damage. The cardiospecific biomarkers play an important role in the diagnosis and prediction of AMI. The purpose of this review is to summarize the information about the main existing cardiac biomarkers and their diagnostic and prognostic value for patients with AMI. The currently existing cardiac biomarkers of AMI may be divided into several groups: biomarkers of necrosis and ischemia of cardiomyocytes, neuroendocrine biomarkers, inflammatory biomarkers, as well as a number of new AMI biomarkers, the diagnostic value of which is still poorly understood in AMI. In the first part of the review, we discuss the diagnostic and prognostic value of the biomarkers of myocardial necrosis and ischemia (aspartate aminotransferase; creatine phosphokinase and its isoform MB; cardiac troponins; myoglobin; BB-isoform of glycogen phosphorylase; ischemia-modified albumin; cardiac protein binding fatty acids) and neuroendocrine biomarkers of AMI (natriuretic peptides; adrenomedulline; copeptin, catestatin; components of the renin-angiotensin-aldosterone system).

About the authors

Aleksey M. Chaulin

Samara Regional Cardiology Dispensary; Samara State Medical University

Author for correspondence.
Email: alekseymichailovich22976@gmail.com
ORCID iD: 0000-0002-2712-0227
SPIN-code: 1107-0875

postgraduate/assistant of the department, MD

Russian Federation, Samara

Dmitry V. Duplyakov

Samara Regional Cardiology Dispensary; Samara State Medical University

Email: duplyakov@yahoo.com
ORCID iD: 0000-0002-6453-2976
SPIN-code: 5665-9578

MD, PhD, Professor

Russian Federation, Samara

References

  1. Karmen A, Wroblewski F, Ladue JS. Transaminase activity in human blood. J Clin Invest. 1955;34(1):126–131. doi: 10.1172/JCI103055.
  2. Wroblewski F, Ladue JS. Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med. 1955;90(1):210–213. doi: 10.3181/00379727-90-21985.
  3. Dolci A, Panteghini M. The exciting story of cardiac biomarkers: from retrospective detection to gold diagnostic standard for acute myocardial infarction and more. Clin Chim Acta. 2006;369(2):179–187. doi: 10.1016/j.cca.2006.02.042.
  4. Ladenson JH. A personal history of markers of myocyte injury [myocardial infarction]. Clin Chim Acta. 2007;381(1):3–8. doi: 10.1016/j.cca.2007.02.039.
  5. Nowakowski JF. Use of cardiac enzymes in the evaluation of acute chest pain. Ann Emerg Med. 1986;15(3):354–360. doi: 10.1016/s0196-0644(86)80584-4.
  6. Troponin T and myocardial damage. Lancet. 1991;338(8758):23–24. doi: 10.1016/0140-6736(91)90011-D.
  7. Mair P, Mair J, Koller J, et al. Cardiac troponin T in the diagnosis of heart contusion. Lancet. 1991;338(8768):693. doi: 10.1016/0140-6736(91)91266-w.
  8. Katus HA, Remppis A, Looser S, et al. Enzyme linked immuno assay of cardiac troponin T for the detection of acute myocardial infarction in patients. J Mol Cell Cardiol. 1989;21(12):1349–1353. doi: 10.1016/0022-2828(89)90680-9.
  9. Myocardial infarction redefined – a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Eur Heart J. 2000;21(18):1502–1513. doi: 10.1053/euhj.2000.2305.
  10. Чаулин А.М., Карслян Л.С., Базюк Е.В., и др. Клинико-диагностическая ценность кардиомаркеров в биологических жидкостях человека // Кардиология. — 2019. — Т.59. — №11. — С. 66–75. [Chaulin AM, Karslyan LS, Grigoriyeva EV, et al. Clinical and diagnostic value of cardiac markers in human biological fluids. Kardiologiia. 2019;59(11):66–75. (In Russ).] doi: 10.18087/cardio.2019.11.n414.
  11. Чаулин А.М., Карслян Л.С., Дупляков Д.В. Некоронарогенные причины повышения тропонинов в клинической практике // Клиническая практика. — 2020. — Т.10. — №4. — С. 81–93. [Chaulin AM, Karslyan LS, Duplyakov DV. Non-coronarogenic causes of increased cardiac troponins in clinical practice. Journal of Clinical Practice. 2020;10(4):81–93. (In Russ).] doi: 10.17816/clinpract16309.
  12. Русаков Д.Ю., Вологдина Н.Н., Тулаева О.Н. Развитие исчерченной сердечной мышечной ткани в стенках полых и легочных вен // Журнал анатомии и гистопатологии. — 2015. — Т.4. — №3. — С. 105. [Rusakov DYu, Vologdina NN, Tulayeva ON. The development of striated cardiac muscle tissue in the walls of the caval and pulmonary veins. Journal of Anatomy and Histopathology. 2015;4(3):105. (In Russ).]
  13. Bodor GS, Survant L, Voss EM, et al. Cardiac troponin T composition in normal and regenerating human skeletal muscle. Clin Chem. 1997;43(3):476–484. doi: 10.1093/clinchem/43.3.476.
  14. Sacks DB. Acute coronary ischemia: troponin I and T. Vasc Med. 1999;4(4):253–256. doi: 10.1177/1358836X9900400408.
  15. Чаулин А.М., Григорьева Ю.В. Основные аспекты биохимии, физиологии сердечных тропонинов // Бюллетень науки и практики. — 2020. — Т.6. — №5. — С. 105–112. [Chaulin AM, Grigoryeva YuV. Main aspects of biochemistry, physiology of cardiac troponins. Bulletin of Science and Practice. 2020;6(5):105–112. (In Russ).] doi: 10.33619/2414-2948/54/13.
  16. Дупляков Д.В., Чаулин А.М. Мутации сердечных тропонинов, ассоциированных с кардиомиопатиями // Кардиология: новости, мнения, обучение. — 2019. — Т.7. — №3. — С. 8–17. [Duplyakov DV, Chaulin AM. Mutations of heart troponines, associated with cardiomyopathies. Cardiology: News, Opinions, Training. 2019;7(3):8–17. (In Russ).] doi: 10.24411/2309-1908-2019-13001.
  17. Morrow DA, Cannon CP, Jesse RL, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Clin Chem. 2007;53(4):552–574. doi: 10.1373/clinchem.2006.084194.
  18. Apple FS, Collinson PO; for the IFCC Task Force on Clinical Applications of Cardiac Biomarkers. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin Chem. 2012;58(1):54–61. doi: 10.1373/clinchem.2011.165795.
  19. Chenevier-Gobeaux C, Bonnefoy-Cudraz É, Charpentier S, et al. High-sensitivity cardiac troponin assays: answers to frequently asked questions [published correction appears in Arch Cardiovasc Dis. 2015;108(5):331–332]. Arch Cardiovasc Dis. 2015;108(2):132–149. doi: 10.1016/j.acvd.2014.11.001.
  20. Conrad MJ, Jarolim P. Cardiac troponins and high-sensitivity cardiac troponin assays. Clin Lab Med. 2014;34(1):59–73. doi: 10.1016/j.cll.2013.11.008.
  21. Body R. Acute coronary syndromes diagnosis, version 2.0: Tomorrow’s approach to diagnosing acute coronary syndromes? Turk J Emerg Med. 2018;18(3):94–99. doi: 10.1016/j.tjem.2018.05.005.
  22. Manikkan AT. Elevated troponin i levels in diabetic ketoacidosis without obstructive coronary artery disease. J Endocr Soc. 2018;2(9):1020–1023. doi: 10.1210/js.2018-00152.
  23. Stacy SR, Suarez-Cuervo C, Berger Z, et al. Role of troponin in patients with chronic kidney disease and suspected acute coronary syndrome: a systematic review. Ann Intern Med. 2014;161(7):502–512. doi: 10.7326/M14-0746.
  24. Чаулин А.М., Карслян Л.С., Григорьева Е.В., и др. Особенности метаболизма сердечных тропонинов (обзор литературы) // Комплексные проблемы сердечно-сосудистых заболеваний. — 2019. — Т.8. — №4. — С. 103–115. [Chaulin AM, Karslyan LS, Grigorieva EV, et al. Metabolism of cardiac troponins (literature review). Complex Issues of Cardiovascular Diseases. 2019;8(4):103–115. (In Russ).] doi: 10.17802/2306-1278-2019-8-4-103-115.
  25. Чаулин А.М., Григорьева Ю.В., Дупляков Д.В. Коморбидность хронической обструктивной болезни легких и сердечно-сосудистых заболеваний: общие факторы, патофизиологические механизмы и клиническое значение // Клиническая практика. — 2020. — Т.11. — №1. — C. 112–121. [Chaulin AM, Grigoryeva YuV, Duplyakov DV. Comboridity of chronic obstructive pulmonary disease and cardiovascular diseases: general factors, pathophysiological mechanisms and clinical significance. Journal of Clinical Practice. 2020;11(1):112–121. (In Russ).] doi: 10.17816/clinpract21218.
  26. Gupta S, Alagona P Jr. Troponins: not always a myocardial infarction. Am J Med. 2008;121(9):e25–e29. doi: 10.1016/j.amjmed.2008.03.026.
  27. Klinkenberg LJ, van Dijk JW, Tan FE, et al. Circulating cardiac troponin T exhibits a diurnal rhythm. J Am Coll Cardiol. 2014;63(17):1788–1795. doi: 10.1016/j.jacc.2014.01.040.
  28. Klinkenberg LJ, Wildi K, van der Linden N, et al. diurnal rhythm of cardiac troponin: consequences for the diagnosis of acute myocardial infarction. Clin Chem. 2016;62(12):1602–1611. doi: 10.1373/clinchem.2016.257485.
  29. Mueller M, Vafaie M, Biener M, et al. Cardiac troponin T: from diagnosis of myocardial infarction to cardiovascular risk prediction. Circ J. 2013;77(7):1653–1661. doi: 10.1253/circj.CJ-13-0706.
  30. Das B, Mishra TK, Trinath KM. Cardiac troponins: current status. JICC. 2017;7(1):1–5. doi: 10.1016/j.jicc.2016.12.006.
  31. Tan NS, Goodman SG, Cantor WJ, et al. Efficacy of early invasive management after fibrinolysis for ST-segment elevation myocardial infarction in relation to initial troponin status. Can J Cardiol. 2016;32(10):1221.e11–1221.e18. doi: 10.1016/j.cjca.2016.01.010.
  32. Pervan P, Svagusa T, Prkacin I, et al. Urine high-sensitive troponin I measuring in patients with hypertension. Signa Vitae. 2017;13(3):62–64. doi: 10.22514/SV133.062017.13.
  33. Бунин В.А., Козлов К.Л., Линькова Н.С., Пальцева Е.М. Повышение концентрации тропонина-1 в слюне пациентов с ишемической болезнью сердца коррелирует со стадией развития заболевания // Комплексные проблемы сердечно-сосудистых заболеваний. — 2017. — Т.6. — №S4. — С. 13–14. [Bunin VA, Kozlov KL, Linkova NS, Paltseva EM. An increase in troponin-I concentration in the saliva of patients with coronary heart disease correlates with the stage of disease development. Комплексные проблемы сердечно-сосудистых заболеваний. 2017;6(S4):13–14. (In Russ).]
  34. Mirzaii-Dizgah I, Riahi E. Salivary troponin I as an indicator of myocardial infarction. Indian J Med Res. 2013;138(6):861–865.
  35. Mair J, Artner-Dworzak E, Lechleitner P, et al. Early diagnosis of acute myocardial infarction by a newly developed rapid immunoturbidimetric assay for myoglobin. Br Heart J. 1992;68(5):462–468. doi: 10.1136/hrt.68.11.462
  36. Rebalka IA, Hawke TJ. Potential biomarkers of skeletal muscle damage. Biomark Med. 2014;8(3):375–378. doi: 10.2217/bmm.13.163.
  37. Zager RA. Marked protection against acute renal and hepatic injury after nitrited myoglobin + tin protoporphyrin administration. Transl Res. 2015;166(5):485–501. doi: 10.1016/j.trsl.2015.06.004.
  38. Newby LK, Storrow AB, Gibler WB, et al. Bedside multimarker testing for risk stratification in chest pain units: The chest pain evaluation by creatine kinase-MB, myoglobin, and troponin I (CHECKMATE) study. Circulation. 2001;103(14):1832–1837. doi: 10.1161/01.cir.103.14.1832.
  39. McCord J, Nowak RM, Hudson MP, et al. The prognostic significance of serial myoglobin, troponin I, and creatine kinase-MB measurements in patients evaluated in the emergency department for acute coronary syndrome. Ann Emerg Med. 2003;42(3):343–350. doi: 10.1016/s0196-0644(03)00411-6.
  40. Kontos MC, Garg R, Anderson FP, et al. Ability of myoglobin to predict mortality in patients admitted for exclusion of myocardial infarction. Am J Emerg Med. 2007;25(8):873–879. doi: 10.1016/j.ajem.2007.01.002.
  41. Lippi G, Mattiuzzi C, Comelli I, Cervellin G. Glycogen phosphorylase isoenzyme BB in the diagnosis of acute myocardial infarction: a meta-analysis. Biochem Med (Zagreb). 2013;23(1):78–82. doi: 10.11613/bm.2013.010.
  42. Rabitzsch G, Mair J, Lechleitner P, et al. Isoenzyme BB of glycogen phosphorylase b and myocardial infarction. Lancet. 1993;341(8851):1032–1033. doi: 10.1016/0140-6736(93)91129-a.
  43. Rabitzsch G, Mair J, Lechleitner P, et al. Immunoenzymometric assay of human glycogen phosphorylase isoenzyme BB in diagnosis of ischemic myocardial injury. Clin Chem. 1995;41(7):966–978. doi: 10.1093/clinchem/41.7.966.
  44. Singh N, Rathore V, Mahat RK, Rastogi P. Glycogen phosphorylase BB: a more sensitive and specific marker than other cardiac markers for early diagnosis of acute myocardial infarction. Indian J Clin Biochem. 2018;33(3):356–360. doi: 10.1007/s12291-017-0685-y.
  45. Bar-Or D, Lau E, Winkler JV. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia-a preliminary report. J Emerg Med. 2000;19(4):311–315. doi: 10.1016/s0736-4679(00)00255-9.
  46. Wu AH. Cardiac markers. Pathology and laboratory medicine. 2nd ed. Totowa NJ: Humana; 2003. Р. 259–277.
  47. Bar-Or D, Curtis G, Rao N, et al. Characterization of the Co(2+) and Ni(2+) binding amino-acid residues of the N-terminus of human albumin. An insight into the mechanism of a new assay for myocardial ischemia. Eur J Biochem. 2001;268(1):42–47. doi: 10.1046/j.1432-1327.2001.01846.x.
  48. Mehta MD, Marwah SA, Ghosh S, et al. A synergistic role of ischemia modified albumin and high-sensitivity troponin T in the early diagnosis of acute coronary syndrome. J Family Med Prim Care. 2015;4(4):570–575. doi: 10.4103/2249-4863.174295.
  49. Manini AF, Ilgen J, Noble VE, et al. Derivation and validation of a sensitive IMA cutpoint to predict cardiac events in patients with chest pain. Emerg Med J. 2009;26(11):791–796. doi: 10.1136/emj.2008.068130.
  50. Kim Y, Kim H, Kim SY, et al. Automated heart-type fatty acid-binding protein assay for the early diagnosis of acute myocardial infarction. Am J Clin Pathol. 2010;134(1):157–162. doi: 10.1309/AJCP0F6AXRCJMQQG.
  51. Agnello L, Bivona G, Novo G, et al. Heart-type fatty acid binding protein is a sensitive biomarker for early AMI detection in troponin negative patients: a pilot study. Scand J Clin Lab Invest. 2017;77(6):428–432. doi: 10.1080/00365513.2017.1335880.
  52. Reiter M, Twerenbold R, Reichlin T, et al. Heart-type fatty acid-binding protein in the early diagnosis of acute myocardial infarction. Heart. 2013;99(10):708–714. doi: 10.1136/heartjnl-2012-303325.
  53. Эрлих А.Д., Катруха А.Г., Трифонов И.Р., и др. Острый коронарный синдром без подъемов сегмента ST на ЭКГ. Прогностическое значение определения сердечной формы белка, связывающие жирные кислоты. Результаты 12-месячного наблюдения // Кардиология. — 2005. — Т.45. — №5. — С. 13–21. [Erlikh AD, Katrukha AG, Trifonov IR, et al. Acute coronary syndrome without ST-segment elevation on ECG. The prognostic value of determining the cardiac form of the protein, fatty acid binding. The results of the 12-month follow-up. Kardiologiia. 2005;45(5):13–21 (In Russ).]
  54. Jones JD, Chew PG, Dobson R, et al. The prognostic value of heart type fatty acid binding protein in patients with suspected acute Coronary Syndrome: a systematic review. Curr Cardiol Rev. 2017;13(3):189–198. doi: 10.2174/1573403X13666170116121451.
  55. Ye XD, He Y, Wang S, et al. Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol Sin. 2018;39(7):1155–1163. doi: 10.1038/aps.2018.37.
  56. Richards AM, Nicholls MG, Espiner EA, et al. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction. Circulation. 2003;107(22):2786–2792. doi: 10.1161/01.CIR.0000070953.76250.B9.
  57. Staub D, Nusbaumer C, Zellweger MJ, et al. Use of B-type natriuretic peptide in the detection of myocardial ischemia. Am Heart J. 2006;151(6):1223–1230. doi: 10.1016/j.ahj.2005.06.045.
  58. Niu JM, Ma ZL, Xie C, Zhang ZQ. Association of plasma B-type natriuretic peptide concentration with myocardial infarct size in patients with acute myocardial infarction. Genet Mol Res. 2014;13(3):6177–6183. doi: 10.4238/2014.February.21.6.
  59. Park M, Vittinghoff E, Shlipak MG, et al. Associations of N-terminal pro-B-type natriuretic peptide with kidney function decline in persons without clinical heart failure in the Heart and Soul Study. Am Heart J. 2014;168(6):931–939.e2. doi: 10.1016/j.ahj.2014.09.008.
  60. Drewniak W, Szybka W, Bielecki D, et al. Prognostic significance of NT-proBNP Levels in patients over 65 presenting acute myocardial infarction treated invasively or conservatively. Biomed Res Int. 2015;2015:782026. doi: 10.1155/2015/782026.
  61. Islam MN, Alam MF, Debnath RC, et al. Correlation between Troponin-I and B-Type natriuretic peptide level in acute myocardial infarction patients with heart failure. Mymensingh Med J. 2016;25(2):226–231.
  62. Reesukumal K, Pratumvinit B. B-type natriuretic peptide not TIMI risk score predicts death after acute coronary syndrome. Clin Lab. 2012;58(9-10):1017–1022. doi: 10.7754/clin.lab.2012.111201.
  63. Khan SQ, Quinn P, Davies JE, Ng LL. N-terminal pro-B-type natriuretic peptide is better than TIMI risk score at predicting death after acute myocardial infarction. Heart. 2008;94(1):40–43. doi: 10.1136/hrt.2006.108985.
  64. Hamid SA, Baxter GF. Adrenomedullin: regulator of systemic and cardiac homeostasis in acute myocardial infarction. Pharmacol Ther. 2005;105(2):95–112. doi: 10.1016/j.pharmthera.2004.08.012.
  65. Ishimitsu T, Ono H, Minami J, Matsuoka H. Pathophysiologic and therapeutic implications of adrenomedullin in cardiovascular disorders. Pharmacol Ther. 2006;111(3):909–927. doi: 10.1016/j.pharmthera.2006.02.004.
  66. Yuyun MF, Narayan HK, Ng LL. Prognostic significance of adrenomedullin in patients with heart failure and with myocardial infarction. Am J Cardiol. 2015;115(7):986–991. doi: 10.1016/j.amjcard.2015.01.027.
  67. Чаулин А.М., Александров А.Г., Карслян Л.С., и др. Катестатин — новый регулятор сердечно-сосудистой системы (обзор литературы) // Бюллетень науки и практики. — 2019. — Т.5. — №6. — С. 129–136. [Chaulin AM, Aleksandrov AG, Karslyan LS, et al. Catestatin – a new cardiovascular system regulator (literature review). Bulletin of Science and Practice. 2019;5(6):129–136. (In Russ).] doi: 10.33619/2414-2948/43/17.
  68. Meng L, Wang J, Ding WH, et al. Plasma catestatin level in patients with acute myocardial infarction and its correlation with ventricular remodelling. Postgrad Med J. 2013;89(1050):193–196. doi: 10.1136/postgradmedj-2012-131060.
  69. Liu L, Ding W, Zhao F, et al. Plasma levels and potential roles of catestatin in patients with coronary heart disease. Scand Cardiovasc J. 2013;47(4):217–224. doi: 10.3109/14017431.2013.794951.
  70. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52(1):112–119. doi: 10.1373/clinchem.2005.060038.
  71. Kelly D, Squire IB, Khan SQ, et al. C-terminal provasopressin (copeptin) is associated with left ventricular dysfunction, remodeling, and clinical heart failure in survivors of myocardial infarction. J Card Fail. 2008;14(9):739–745. doi: 10.1016/j.cardfail.2008.07.231.
  72. Reinstadler SJ, Klug G, Feistritzer HJ, et al. Copeptin testing in acute myocardial infarction: ready for routine use? Dis Markers. 2015;2015:614145. doi: 10.1155/2015/614145.
  73. Nobian A, Mohamed A, Spyridopoulos I. The role of arginine vasopressin in myocardial infarction and reperfusion. Kardiol Pol. 2019;77(10):908–917. doi: 10.33963/KP.14986.
  74. Kim KS, Suh GJ, Song SH, et al. Copeptin with high-sensitivity troponin at presentation is not inferior to serial troponin measurements for ruling out acute myocardial infarction. Clin Exp Emerg Med. 2020;7(1):35–42. doi: 10.15441/ceem.19.013.
  75. Jeong JH, Seo YH, Ahn JY, et al. Performance of copeptin for early diagnosis of acute myocardial infarction in an emergency department setting. Ann Lab Med. 2020;40(1):7–14. doi: 10.3343/alm.2020.40.1.7.
  76. Budnik M, Białek S, Peller M, et al. Serum copeptin and copeptin/NT-proBNP ratio — new tools to differentiate takotsubo syndrome from acute myocardial infarction. Folia Med Cracov. 2020;60(1):5–14. doi: 10.24425/fmc.2020.133481.
  77. Богданов А.Р., Залетова Т.С., Сенцова Т.Б., и др. Биомаркеры ренин-ангиотензин-альдостероновой системы как предикторы сердечной недостаточности у пациентов с ожирением // Сердечная недостаточность. — 2014. — Т.84. — №3. — С. 160–166. [Bogdanov AR, Zaletova TS, Sentsova TB, et al. Biomarkers of the renin-angiotensin-aldosterone system as predictors of heart failure in obese patients. Serdechnaia nedostatochnost’. 2014;84(3):160–166. (In Russ).]
  78. McAlpine HM, Morton JJ, Leckie B, et al. Neuroendocrine activation after acute myocardial infarction. Br Heart J. 1988;60(2):117–124. doi: 10.1136/hrt.60.2.117.
  79. Liu J, Masoudi FA, Spertus JA, et al. Patterns of use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers among patients with acute myocardial infarction in China from 2001 to 2011: China PEACE-Retrospective AMI Study. J Am Heart Assoc. 2015;4(2):e001343. doi: 10.1161/JAHA.114.001343.
  80. Pitt B, Bakris G, Ruilope LM, et al.; EPHESUS Investigators. Serum potassium and clinical outcomes in the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS). Circulation. 2008;118(16):1643–1650. doi: 10.1161/CIRCULATIONAHA.108.778811.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The main reasons (except for acute myocardial infarction) of increased cardiac troponins [11]

Download (429KB)

Copyright (c) 2020 Chaulin A.M., Duplyakov D.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies