COVID-19: аn Update on the Modern Etiotropic Therapy Methods for the New Coronavirus Infection

Cover Page

Cite item

Full Text

Abstract

The COVID-19 pandemic, caused by the SARS-CoV-2 RNA-virus, has a significant impact not only on the people’s lifestyle and health, but on the global economy, as well. According to the epidemiological data, the highest level of the sickness rate in Russian Federation was in January-February of 2022, while the death rate was 1.9%. The numerous studies on the COVID-19 pathogenesis allowed improving the approaches to the development of efficient clinical strategies. However, a number of important issues regarding the clinical applications of new and repurposed drugs on the market still remain unresolved. It is a well-known fact that the most effective way of preventing the immune system from developing the hyperactive reaction known as a cytokine storm is prescribing the etiotropic therapy as fast as possible. Etiotropic drugs are divided into three large groups: those preventing the virus from penetrating the cell, those affecting the replication-transcriptional complex and the last but not the least group is the drugs with the direct or indirect cytotoxic effect. This review introduces some important data regarding the etiotropic treatment methods for the new coronavirus disease.

About the authors

Evgeny A. Sinitsyn

Pulmonology Scientific Research Institute; Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Author for correspondence.
Email: sinymlad@list.ru
ORCID iD: 0000-0002-8813-5932
SPIN-code: 3156-7024

Researcher, Assistant Lecturer

Russian Federation, Moscow; Moscow

Ekaterina V. Smolyakova

Pulmonology Scientific Research Institute; Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Email: smolyakovak@mail.ru
ORCID iD: 0000-0002-1904-5319
SPIN-code: 1751-0230

MD, PhD

Russian Federation, Moscow; Moscow

Stanislav S. Kamyshanov

N.I. Pirogov Russian National Research Medical University

Email: staskamyshanov@gmail.com
ORCID iD: 0009-0007-1455-5137

Student

Russian Federation, Moscow

Kirill A. Zykov

Pulmonology Scientific Research Institute; Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Email: kirillaz@inbox.ru
ORCID iD: 0000-0003-3385-2632
SPIN-code: 6269-7990

MD, PhD, Dr. Sci. (Med.), Professor of the Russian Academy of Sciences, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Moscow; Moscow

References

  1. Statement on the fifteenth meeting of the IHR (2005) Emergency Committee on the COVID-19 pandemic [2023 May 5]. Available from: https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic. Accessed: 24.05.2023.
  2. СтопКоронавирус.РФ [интернет]. Оперативные данные. [StopCoronavirus.RF [Internet]. Operational data. (In Russ).] Режим доступа: https://стопкоронавирус.рф. Дата обращения: 24.05.2023.
  3. Зыков К.А., Синицын Е.А., Рвачева А.В., и др. Обоснование нового алгоритма амбулаторной лекарственной терапии пациентов с COVID-19, основанного на принципе множественных воздействий // Антибиотики и химиотерапия. 2021. Т. 66, № 3–4. С. 49–61. [Zykov KA, Sinitsyn EA, Rvacheva AV, et al. Substantiation of a new algorithm for outpatient drug therapy of patients with COVID-19 based on the principle of multiple exposures. Antibiotiki i Khimioterapiya. 2021;66(3-4): 49–61. (In Russ).] doi: 10.37489/0235-2990-2021-66-3-4-49-61
  4. Ong CW, Migliori GB, Raviglione M, et al. Epidemic and pandemic viral infections: Impact on tuberculosis and the lung: A consensus by the World Association for Infectious Diseases and Immunological Disorders (WAidid), Global Tuberculosis Network (GTN), and members of the European Society of Clinical Microbiology and Infectious Diseases Study Group for Mycobacterial Infections (ESGMYC). Eur Respir J. 2020;56(4):2001727. doi: 10.1183/13993003.01727-2020
  5. Huang D, Yu H, Wang T, et al. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Med Virol. 2021;93(1):481–490. doi: 10.1002/jmv.26256
  6. Rajendran K, Krishnasamy N, Rangarajan J, et al. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review. J Med Virol. 2020;92(9):1475–1483. doi: 10.1002/jmv.25961
  7. Brown BL, McCullough J. Treatment for emerging viruses: Convalescent plasma and COVID-19. Transfus Apher Sci. 2020; 59(3):102790. doi: 10.1016/j.transci.2020.102790
  8. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020; 92(4):418–423. doi: 10.1002/jmv.25681
  9. Zhao Q, He Y. Challenges of convalescent plasma therapy on COVID-19. J Clin Virol. 2020;(127):104358. doi: 10.1016/j.jcv.2020.104358
  10. Baklaushev VP, Averyanov AV, Sotnikova AG, et al. Safety and efficacy of convalescent plasma for COVID-19: The preliminary results of a clinical trial. J Clin Pract. 2020;11(2):38–50. doi: 10.17816/clinpract35168
  11. Axfors C, Janiaud P, Schmitt AM, et al. Association between convalescent plasma treatment and mortality in COVID-19: A collaborative systematic review and meta-analysis of randomized clinical trials. BMC Infect Dis. 2021;21(1):1170. doi: 10.1186/s12879-021-06829-7
  12. Qian Z, Zhang Z, Ma H, et al. The efficiency of convalescent plasma in COVID-19 patients: A systematic review and meta-analysis of randomized controlled clinical trials. Front Immunol. 2022;(13):964398. doi: 10.3389/fimmu.2022.964398
  13. Tаyyаr R, Wоng LK, Dаhlen A, et al. High-titеr pоst-vассinе COVID-19 соnvаlеsсеnt plаsmа for immunоcоmprоmised patients during thе first Оmicrоn surgе. Trаnspl Infесt Dis. 2023;25(2):e14055. dоi: 10.1111/tid.14055
  14. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 17 (09.12.2022). Утв. Минздравом России. [Temporary methodological recommendations. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 17 (09.12.2022). Approved by the Ministry of Health of Russia. (In Russ).]
  15. Bruzzesi E, Ranzenigo M, Castagna A, Spagnuolo V. Neutralizing monoclonal antibodies for the treatment and prophylaxis of SARS-CoV-2 infection. New Microbiol. 2021;44(3):135–144.
  16. Takashita E, Yamayoshi S, Simon V, et al. Efficacy of antibodies and antiviral drugs against omicron BA.2.12.1, BA.4, and BA.5 subvariants. N Engl J Med. 2022;387(5):468–470. doi: 10.1056/NEJMc2207519
  17. Food and Drug Administration [Internet]. FDA announces bebtelovimab is not currently authorized in any US region [2022 Nov 30]. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-announces-bebtelovimab-not-currently-authorized-any-us-region. Accessed: 24.05.2023.
  18. Ueno M, Iwata-Yoshikawa N, Matsunaga A, et al. Isolation of human monoclonal antibodies with neutralizing activity to a broad spectrum of SARS-CoV-2 viruses including the Omicron variants. Antiviral Res. 2022;(201):105297. doi: 10.1016/j.antiviral.2022.105297
  19. Xiang HR, Cheng X, Li Y, et al. Efficacy of IVIG (intravenous immunoglobulin) for corona virus disease 2019 (COVID-19): A meta-analysis. Int Immunopharmacol. 2021;(96):107732. doi: 10.1016/j.intimp.2021.107732
  20. Marcolino MS, Meira KC, Guimarães NS, et al. Systematic review and meta-analysis of ivermectin for treatment of COVID-19: Evidence beyond the hype. BMC Infect Dis. 2022;22(1):639. doi: 10.1186/s12879-022-07589-8
  21. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. doi: 10.1016/j.ijantimicag.2020.105949
  22. Intson K, Kumar S, Botta A, et al. An independent appraisal and re-analysis of hydroxychloroquine treatment trial for COVID-19. Swiss Med Wkly. 2020;(150):w20262. doi: 10.4414/smw.2020.20262
  23. Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020;382(25):2411–2418. doi: 10.1056/NEJMoa2012410
  24. Boulware DR, Pullen MF, Bangdiwala AS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. 2020;383(6):517–525. doi: 10.1056/NEJMoa2016638
  25. Rashad A, Nafady A, Hassan MH, et al. Therapeutic efficacy of macrolides in management of patients with mild COVID-19. Sci Rep. 2021;11(1):16361. doi: 10.1038/s41598-021-95900-z
  26. Coomes EA, Haghbayan H. Favipiravir, an antiviral for COVID-19? J Antimicrob Chemother. 2020;75(7):2013–2014. doi: 10.1093/jac/dkaa171
  27. Khamis F, Al Naabi H, Al Lawati A, et al. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. Int J Infect Dis. 2021;(102): 538–543. doi: 10.1016/j.ijid.2020.11.008
  28. WHO [Internet]. Living guideline: Drugs to prevent COVID-19. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-prophylaxes-2021-1. Accessed: 24.05.2023.
  29. Gupta T, Thakkar P, Kalra B, Kannan S. Hydroxychloroquine in the treatment of coronavirus disease 2019: Rapid updated systematic review and meta-analysis. Rev Med Virol. 2022; 32(2):e2276. doi: 10.1002/rmv.2276
  30. Shah PL, Orton CM, Grinsztejn B, et al.; PIONEER trial group. Favipiravir in patients hospitalised with COVID-19 (PIONEER trial): A multicentre, open-label, phase 3, randomised controlled trial of early intervention versus standard care. Lancet Respir Med. 2022:S2213-2600(22)00412-X. doi: 10.1016/S2213-2600(22)00412-X
  31. Beckerman R, Gori A, Jeyakumar S, et al. Remdesivir for the treatment of patients hospitalized with COVID-19 receiving supplemental oxygen: A targeted literature review and meta-analysis. Sci Rep. 2022;12(1):9622. doi: 10.1038/s41598-022-13680-6
  32. Wu X, Yu K, Wang Y, et al. Efficacy and safety of triazavirin therapy for coronavirus disease 2019: A pilot randomized controlled trial. Engineering (Beijing). 2020;6(10):1185–1191. doi: 10.1016/j.eng.2020.08.011
  33. Сабитов А.У., Белоусов В.В., Един А.С., и др. Практический опыт применения препарата риамиловир в лечении пациентов с COVID-19 средней степени тяжести // Антибиотики и химиотерапия. 2020. Т. 65, № 7-8. С. 27–30. [Sabitov AU, Belousov VV, Odin AS, et al. Practical experience of using the drug Riamilovir in the treatment of patients with COVID-19 of moderate severity. Antibiotiki i Khimioterapiya. 2020;65(7-8): 27–30. (In Russ).] doi: 10.37489/0235-2990-2020-65-7-8-27-30
  34. Анциферов М.Б., Аронов Л.С., Белевский А.С., и др. Клинический протокол лечения больных новой коронавирусной инфекцией (COVID-19), находящихся на стационарном лечении в медицинских организациях государственной системы здравоохранения города Москвы / под ред. А.И. Хрипуна. Москва, 2020. 28 с. [Antsiferov MB, Aronov LS, Belevsky AS, et al. Clinical protocol for the treatment of patients with a new coronavirus infection (COVID-19) who are on inpatient treatment in medical organizations of the state healthcare system of the city of Moscow. Ed. by A.I. Khripun. Moscow; 2020. 28 р. (In Russ).]
  35. Khaitov M, Nikonova A, Shilovskiy I, et al. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy. 2021;76(9):2840–2854. doi: 10.1111/all.14850
  36. Lai CC, Wang YH, Chen KH, et al. The clinical efficacy and safety of anti-viral agents for non-hospitalized patients with COVID-19: A systematic review and network meta-analysis of randomized controlled trials. Viruses. 2022;14(8):1706. doi: 10.3390/v14081706

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Assumed mechanism of the drugs’ action in the COVID-19 etiotropic therapy (adapted from [4]).

Download (1MB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies