Comparative study of the effects of mesenchymal stem cells with different delivery methods in an experimental model of lung fibrosis

Cover Page

Cite item

Full Text

Abstract

Background: Transplantation of mesenchymal stem cells (MSCs) is one of the most promising directions in the treatment of idiopathic pulmonary fibrosis. In experimental small animal studies, intravenous and endobronchial (installation) techniques are used for the cell preparation delivery, while in humans inhalation of drugs is the simplest and most available method.

Aim: The aim of the study was to determine the optimal type of a nebulizer for viability of MSCs during nebulization, followed by a comparison of the effects of inhalation and intravenous delivery methods in a standard model of bleomycin pulmonary fibrosis in rabbits.

Methods: At the first stage, the survival of MSCs was assessed ex vivo after 10 minutes of compressor, ultrasound and mesh nebulization. Subsequently we used a nebulizer, which showed the best result in the cells, viability. At the next stage аfter bronchoscopic installation of bleomycin, 5 rabbits received intravenous transplantation of 2×106 allogeneic BMMSCs, other 5 rabbits — 2×107 MSCs inhaled via a compressor nebulizer; the control healthy and bleomycin groups included 5 animals each.

Results: The highest degree of viability of MSC was maintained after passing via the compressor nebulizer (72%), a significantly lower survival rate was observed in ultrasonic nebulization (20%) and no live cells were detected after mesh nebulization. Both groups treated with MSC had a significantly lower fibrosis index on the Ashcroft morphometric scale than the control group of bleomycin fibrosis. Collagen expression in the lung tissue was significantly higher in all the groups with bleomycin injury, but in animals which underwent MSC inhalation, it was significantly different (0.51 point) from the bleomycin group without treatment (2.1 points). The level of neutrophils in the BAL fluid was significantly lower in animals which received the intravenous MSC therapy. The levels of TNF-α and TGF-β1 in the BAL fluids tended to decrease in the treatment groups, but did not differ significantly from control.

Conclusions: The highest survival rate of MSCs is observed when using a compressor nebulizer, which apparently should be considered as the best way for delivering cells to the respiratory tract. Both inhalation and intravenous administration of MSCs cause similar effects of inhibiting the development of bleomycin-induced pulmonary fibrosis, which indicates the possibility of using both ways of cell delivery without loss of effectiveness.

About the authors

A. V. Averyanov

Research Institute of Pulmonology of the Federal Medical-Biological Agency of Russia; Federal Research Clinical Center of the Federal Medical-Biological Agency of Russia

Email: averyanovav@mail.ru
ORCID iD: 0000-0003-1031-6933
SPIN-code: 2229-7100

докт. мед. наук, главный научный сотрудник отдела фундаментальной пульмонологии

Russian Federation, 28, Orekhovy boulevard, Moscow, 115682

A. G. Konoplyannikov

National Medical Research Radiological Center

Email: konopl@obninsk.ru
ORCID iD: 0000-0003-2766-9030

докт. биол. наук, профессор, главный научный сотрудник

Russian Federation, 4, Korolev street, Obninsk, Kaluga region, 249036

F. G. Zabozlaev

Federal Research Clinical Center of the Federal Medical-Biological Agency of Russia

Email: fzab@mail.ru
ORCID iD: 0000-0002-7445-8319
SPIN-code: 3259-9332

докт. мед. наук, заведующий патологоанатомическим отделением

Russian Federation, 28, Orekhovy boulevard, Moscow, 115682

A. G. Sotnikova

Research Institute of Pulmonology of the Federal Medical-Biological Agency of Russia; Federal Research Clinical Center of the Federal Medical-Biological Agency of Russia

Email: sotnikoffaa@gmail.com

заведующая пульмонологическим отделением

Russian Federation, 28, Orekhovy boulevard, Moscow, 115682

O. V. Danilevskaya

Research Institute of Pulmonology of the Federal Medical-Biological Agency of Russia; Federal Research Clinical Center of the Federal Medical-Biological Agency of Russia

Email: danless@mail.ru
ORCID iD: 0000-0002-7573-3554
SPIN-code: 5951-8780

старший научный сотрудник лаборатории патологической анатомии

Russian Federation, 28, Orekhovy boulevard, Moscow, 115682

M. A. Konoplyannikov

Federal Research Clinical Center of the Federal Medical-Biological Agency of Russia

Author for correspondence.
Email: mkonopl@mail.ru
ORCID iD: 0000-0003-1180-2343
SPIN-code: 9211-6391

канд. биол. наук, заведующий лабораторией клеточных технологий

Russian Federation, 28, Orekhovy boulevard, Moscow, 115682

A. R. Tatarsky

Research Institute of Pulmonology of the Federal Medical-Biological Agency of Russia

Email: averyanovav@mail.ru
SPIN-code: 9734-2366

докт. мед. наук, профессор, руководитель образовательного центра

Russian Federation, 28, Orekhovy boulevard, Moscow, 115682

References

  1. Raghu G, Collard HR, Egan JJ, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824. doi: 10.1164/rccm.2009-040GL.
  2. Navaratnam V, Fleming KM, West J, et al. The rising incidence of idiopathic pulmonary fibrosis in the U.K. Thorax. 2011;66(6):462–467. doi: 10.1136/thx.2010.148031.
  3. American Thoracic Society; European Respiratory Society. American Thoracic Society/European Respiratory Society international multidisciplinary consensus classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2002;165(2):277–304. doi: 10.1164/ajrccm.165.2.ats01.
  4. Toonkel RL, Hare JM, Matthay MA, Glassberg MK. Mesenchymal stem cells and idiopathic pulmonary fibrosis. Potential for clinical testing. Am J Respir Crit Care Med. 2013;188(2):133–140. doi: 10.1164/rccm.201207-1204PP.
  5. Moodley Y, Ilancheran S, Samuel C, et al. Human amnion epithelial cell transplantation abrogates lung fibrosis and augments repair. Am J Respir Crit Care Med. 2010;182(5):643–651. doi: 10.1164/rccm.201001-0014OC.
  6. Murphy S, Lim R, Dickinson H, et al. Human amnion epithelial cells prevent bleomycin-induced lung injury and preserve lung function. Cell Transplant. 2011;20(6):909–923. doi: 10.3727/096368910X543385.
  7. Reddy M, Fonseca L, Gowda S, et al. Human adipose-derived mesenchymal stem cells attenuate early stage of bleomycin induced pulmonary fibrosis: comparison with pirfenidone. Int J Stem Cells. 2016;9(2):192–206. doi: 10.15283/ijsc16041.
  8. Awad HA, Butler DL, Boivin GP, et al. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng. 1999;5(3):267–277. doi: 10.1089/ten.1999.5.267.
  9. Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol. 1988;41(4):467–470.
  10. Yeo LY, Friend JR, McIntosh MP, et al. Ultrasonic nebulization platforms for pulmonary drug delivery. Expert Opin Drug Deliv. 2010;7(6):663–679. doi: 10.1517/17425247.2010.485608.
  11. Martin AR, Finlay WH. Nebulizers for drug delivery to the lungs. Expert Opin Drug Deliv. 2015;12(6):889–900. doi: 10.1517/17425247.2015.995087.
  12. Kamaruzaman NA, Kardia E, Kamaldin N, et al. The rabbit as a model for studying lung disease and stem cell therapy. Biomed Res Int. 2013;2013:691830. doi: 10.1155/2013/691830.
  13. Degryse AL, Lawson WE. Progress toward improving animal models for idiopathic pulmonary fibrosis. Am J Med Sci. 2011;341(6):444–449. doi: 10.1097/MAJ.0b013e31821aa000.
  14. Cargnoni A, Gibelli L, Tosini A, et al. Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin induced lung fibrosis. Cell Transplant. 2009;18(4):405–422. doi: 10.3727/096368909788809857.
  15. Lee SH, Jang AS, Kim YE, et al. Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respir Res. 2010;11:16. doi: 10.1186/1465-9921-11-16.
  16. Lan YW, Choo KB, Chen CM, et al. Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem Cell Res Ther. 2015;6:97. doi: 10.1186/s13287-015-0081-6.
  17. Rojas M, Xu J, Woods CR, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol. 2005;33(2):145–152. doi: 10.1165/rcmb.2004-0330OC.
  18. Xu J, Mora A, Shim H, et al. Role of the SDF-1/CXCR4 axis in the pathogenesis of lung injury and fibrosis. Am J Respir Cell Mol Biol. 2007;37(3):291–299. doi: 10.1165/rcmb.2006-0187OC.
  19. Ortiz LA, Dutreil M, Fattman C, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A. 2007;104(26):11002–11007. doi: 10.1073/pnas.0704421104.
  20. Cargnoni A, Piccinelli EC, Ressel L. Conditioned medium from amniotic membrane-derived cells prevents lung fibrosis and preserves blood gas exchanges in bleomycin-injured mice-specificity of the effects and insights into possible mechanisms. Cytotherapy. 2014;16(1):17–32. doi: 10.1016/j.jcyt.2013.07.002.
  21. Rathinasabapathy A, Bruce E, Espejo A, et al. Therapeutic potential of adipose stem cell-derived conditioned medium against pulmonary hypertension and lung fibrosis. Br J Pharmacol. 2016;173(19):2859–2879. doi: 10.1111/bph.13562.
  22. Islam MN, Das SR, Emin MT, et al. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759–765. doi: 10.1038/nm.2736.
  23. Sinclair KA, Yerkovich ST, Hopkins PM, Chambers DC. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res Ther. 2016;7(1):91. doi: 10.1186/s13287-016-0354-8.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Design of the second phase of the study

Download (48KB)
3. Fig. 2. Viable mesenchymal stem cells after 10-minute sputtering using nebulizers of three different types

Download (176KB)
4. Fig. 3. Representative histological sections of lung tissue in study groups.

Download (2MB)
5. Fig. 4. Immunohistochemical markers of type IV collagen in the studied groups

Download (1MB)

Copyright (c) 2018 Averyanov A.V., Konoplyannikov A.G., Zabozlaev F.G., Sotnikova A.G., Danilevskaya O.V., Konoplyannikov M.A., Tatarsky A.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies