Epicardial Adipose Tissue and Cardiac Arrhythmias
- Authors: Kanorskii S.G.1
-
Affiliations:
- The Kuban State Medical University
- Issue: Vol 2, No 2 (2022)
- Pages: 5-18
- Section: Reviews
- URL: https://journals.rcsi.science/cardar/article/view/107112
- DOI: https://doi.org/10.17816/cardar107112
- ID: 107112
Cite item
Full Text
Abstract
Obesity is associated with an increased risk of atrial and ventricular arrhythmias, including life-threatening ones. Epicardial adipose tissue (EAT) is located deep under the visceral pericardium (epicardium) and is therefore in direct contact with the underlying myocardium. In pathological conditions, EAT undergoes a phenotypic transition from a “neighbor” with protective properties to a substrate that secretes many substances that change the electrophysiology of cardiomyocytes by modulating ion currents that disrupt intercellular electrical connections and stimulate fibrosis. An excess of EAT can cause atrial and ventricular conduction disturbances, which are already evident with standard electrocardiography, predispose to the occurrence of the re-entry phenomenon and cardiac arrhythmias. Among the mechanisms of arrhythmogenesis under the influence of EAT, modulation of ion channels and gap junctions, fibrous remodeling and fatty infiltration are more often considered. However, most of these mechanisms have been studied in experimental studies and cannot easily be extrapolated to humans. There is convincing evidence of a direct relationship between EAT volume and the severity of atrial fibrillation, as well as the clinical benefit obtained from weight loss in patients with this arrhythmia. It is likely that the benefits of weight loss may extend to ventricular arrhythmias.
Full Text
##article.viewOnOriginalSite##About the authors
Sergey G. Kanorskii
The Kuban State Medical University
Author for correspondence.
Email: kanorskysg@mail.ru
ORCID iD: 0000-0003-1510-9204
SPIN-code: 7635-5330
Scopus Author ID: 6701465286
ResearcherId: O-8743-2017
Head of the Department of Therapy
Russian Federation, KrasnodarReferences
- Dai H, Alsalhe TA, Chalghaf N, et al. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: an analysis of the Global Burden of Disease Study. PLoS Med. 2020;17(7):e1003198. doi: 10.1371/journal.pmed.1003198
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1223–1249. doi: 10.1016/S0140-6736(20)30752-2
- Obesity and overweight. June 9, 2021. WHO [cited: 2022 Mar 28]. Available from: https://www.who.int/ news-room/fact-sheets/detail/obesity-and-overweight
- Kivimäki M, Strandberg T, Pentti J, et al. Body-mass index and risk of obesity-related complex multimorbidity: an observational multicohort study. Lancet Diabetes Endocrinol. 2022;10(4):253–263. doi: 10.1016/S2213-8587(22)00033-X
- Cypess AM. Reassessing Human Adipose Tissue. N Engl J Med. 2022;386(8):768–779. doi: 10.1056/NEJMra2032804
- Aune D, Schlesinger S, Norat T, Riboli E. Body mass index, abdominal fatness, and the risk of sudden cardiac death: a systematic review and dose-response meta-analysis of prospective studies. Eur J Epidemiol. 2018;33(8):711–722. doi: 10.1007/s10654-017-0353-9
- Al-Kaisey AM, Kalman JM. Obesity and Atrial Fibrillation: Epidemiology, Pathogenesis and Effect of Weight Loss. Arrhythm Electrophysiol Rev. 2021;10(3):159–164. doi: 10.15420/aer.2021.36
- Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation. 2021;143(21):e984–e1010. doi: 10.1161/CIR.0000000000000973
- Kellman P, Hernando D, Arai AE. Myocardial Fat Imaging. Curr Cardiovasc Imaging Rep. 2010;3(2):83–91. doi: 10.1007/s12410-010-9012-1
- Rabkin SW. The relationship between epicardial fat and indices of obesity and the metabolic syndrome: a systematic review and meta-analysis. Metab Syndr Relat Disord. 2014;12(1):31–42. doi: 10.1089/met.2013.0107
- Mahajan R, Wong CX. Obesity and metabolic syndrome in atrial fibrillation: cardiac and noncardiac adipose tissue in atrial fibrillation. Card Electrophysiol Clin. 2021;13(1):77–86. doi: 10.1016/j.ccep.2020.11.006
- Zhou M, Wang H, Chen J, Zhao L. Epicardial adipose tissue and atrial fibrillation: Possible mechanisms, potential therapies, and future directions. Pacing Clin Electrophysiol. 2020;43(1):133–145. doi: 10.1111/pace.13825
- Tam W-C, Lin Y-K, Chan W-P, et al. Pericardial fat is associated with the risk of ventricular arrhythmia in Asian patients. Circ J. 2016;80(8):1726–1733. doi: 10.1253/circj.CJ-16-0047
- Wu C-K, Tsai H-Y, Su M-YM, et al. Pericardial fat is associated with ventricular tachyarrhythmia and mortality in patients with systolic heart failure. Atherosclerosis. 2015;241(2):607–614. doi: 10.1016/j.atherosclerosis.2015.05.025
- Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: a mini-review. Gerontology. 2012;58(1):15–23. doi: 10.1159/000321319
- Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9(2):191–200. doi: 10.5114/aoms.2013.33181
- Thoonen R, Hindle AG, Scherrer-Crosbie M. Brown adipose tissue: the heat is on the heart. Am J Physiol Heart Circ Physiol. 2016;310(11):H1592–H1605. doi: 10.1152/ajpheart.00698.2015
- Wu J, Boström P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–376. doi: 10.1016/j.cell.2012.05.016
- Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022. doi: 10.1038/s41569-022-00679-9
- Sacks HS, Fain JN. Human epicardial fat: what is new and what is missing? Clin Exp Pharmacol Physiol. 2011;38(12):879–887. doi: 10.1111/j.1440-1681.2011.05601.x
- Xu A, Vanhoutte PM. Adiponectin and adipocyte fatty acid binding protein in the pathogenesis of cardiovascular disease. Am J Physiol Heart Circ Physiol. 2012;302(6):H1231–H1240. doi: 10.1152/ajpheart.00765.2011
- Parisi V, Rengo G, Perrone-Filardi P, et al. Increased epicardial adipose tissue volume correlates with cardiac sympathetic denervation in patients with heart failure. Circ Res. 2016;118(8): 1244–1253. doi: 10.1161/CIRCRESAHA.115.307765
- Drosatos K, Schulze PC. Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr Heart Fail Rep. 2013;10(2): 109–121. doi: 10.1007/s11897-013-0133-0
- Sobczak AIS, Blindauer CA, Stewart AJ. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients. 2019;11(9):2022. doi: 10.3390/nu11092022
- Ly LD, Xu S, Choi S-K, et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med. 2017;49(2):e291. doi: 10.1038/emm.2016.157
- Sovari AA. Cellular and molecular mechanisms of arrhythmia by oxidative stress. Cardiol Res Pract. 2016;2016:9656078. doi: 10.1155/2016/9656078
- Schuldiner M, Bohnert M. A different kind of love - lipid droplet contact sites. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862 (10 Pt B):1188–1196. doi: 10.1016/j.bbalip.2017.06.005
- Schulze PC, Drosatos K, Goldberg IJ. Lipid use and misuse by the heart. Circ Res. 2016;118(11):1736–1751. doi: 10.1161/CIRCRESAHA.116.306842
- Sahasrabuddhe AV, Pitale SU, Sivanesan SD, et al. Pathogenic gene expression of epicardial adipose tissue in patients with coronary artery disease. Indian J Med Res. 2020;151(6):554–561. doi: 10.4103/ijmr.IJMR 1374_18
- Gruzdeva OV, Dyleva YA, Belik EV, et al. Relationship between Epicardial and Coronary Adipose Tissue and the Expression of Adiponectin, Leptin, and Interleukin 6 in Patients with Coronary Artery Disease. J Pers Med. 2022;12(2):129. doi: 10.3390/jpm12020129
- Bambace C, Sepe A, Zoico E, et al. Inflammatory profile in subcutaneous and epicardial adipose tissue in men with and without diabetes. Heart Vessels. 2014;29(1):42–48. doi: 10.1007/s00380-012-0315-9
- Parisi V, Petraglia L, D'Esposito V, et al. Statin therapy modulates thickness and inflammatory profile of human epicardial adipose tissue. Int J Cardiol. 2019;274:326–330. doi: 10.1016/j.ijcard.2018.06.106
- Díaz-Rodríguez E, Agra RM, Fernández ÁL, et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc Res. 2018;114(2):336–346. doi: 10.1093/cvr/cvx186
- Patel KHK, Hwang T, Se Liebers C, Ng FS. Epicardial adipose tissue as a mediator of cardiac arrhythmias. Am J Physiol Heart Circ Physiol. 2022;322(2):H129–H144. doi: 10.1152/ajpheart.00565.2021
- Vyas V, Blythe H, Wood EG, et al. Obesity and diabetes are major risk factors for epicardial adipose tissue inflammation. JCI Insight. 2021;6(16):e145495. doi: 10.1172/jci.insight.145495
- Hamjane N, Benyahya F, Nourouti NG, et al. Cardiovascular diseases and metabolic abnormalities associated with obesity: What is the role of inflammatory responses? A systematic review. Microvasc Res. 2020;131:104023. doi: 10.1016/j.mvr.2020.104023
- Asad Z, Abbas M, Javed I, et al. Obesity is associated with incident atrial fibrillation independent of gender: A meta-analysis. J Cardiovasc Electrophysiol. 2018;29(5):725–732. doi: 10.1111/jce.13458
- Mahajan R, Nelson A, Pathak RK, et al. Electroanatomical Remodeling of the Atria in Obesity: Impact of Adjacent Epicardial Fat. JACC Clin Electrophysiol. 2018;4(12):1529–1540. doi: 10.1016/j.jacep.2018.08.014
- Mahajan R, Lau DH, Brooks AG, et al. Atrial Fibrillation and Obesity: Reverse Remodeling of Atrial Substrate With Weight Reduction. JACC Clin Electrophysiol. 2021;7(5):630–641. doi: 10.1016/j.jacep.2020.11.015
- Lee JJ, Yin X, Hoffmann U, et al. Relation of Pericardial Fat, Intrathoracic Fat, and Abdominal Visceral Fat With Incident Atrial Fibrillation (from the Framingham Heart Study). Am J Cardiol. 2016;118(10):1486–1492. doi: 10.1016/j.amjcard.2016.08.011
- van Rosendael AR, Smit JM, El'Mahdiui M, et al. Association between left atrial epicardial fat, left atrial volume, and the severity of atrial fibrillation. Europace. 2022:euac031. doi: 10.1093/europace/euac031
- Gaeta M, Bandera F, Tassinari F, et al. Is epicardial fat depot associated with atrial fibrillation? A systematic review and meta-analysis. Europace. 2017;19(5):747–752. doi: 10.1093/europace/euw398
- Wong CX, Sun MT, Odutayo A, et al. Associations of epicardial, abdominal, and overall adiposity with atrial fibrillation. Circ Arrhythm Electrophysiol. 2016;9(12):e004378. doi: 10.1161/CIRCEP.116.004378
- Sepehri Shamloo A, Dagres N, Dinov B, et al. Is epicardial fat tissue associated with atrial fibrillation recurrence after ablation? A systematic review and meta-analysis. Int J Cardiol Heart Vasc. 2019;22:132–138. doi: 10.1016/j.ijcha.2019.01.003
- Canpolat U, Aytemir K, Yorgun H, et al. The impact of echocardiographic epicardial fat thickness on outcomes of cryoballoon-based atrial fibrillation ablation. Echocardiography. 2016;33(6):821–829. doi: 10.1111/echo.13193
- Tam WC, Lin YK, Chan WP, et al. Pericardial Fat Is Associated With the Risk of Ventricular Arrhythmia in Asian Patients. Circ J. 2016;80(8):1726–1733. doi: 10.1253/circj.CJ-16-0047
- Yılmaz AS, Çinier G, Çırakoğlu ÖF, Cetin M. Epicardial adipose tissue predicted prolonged QTc interval in patients with arterial hypertension. Clin Exp Hypertens. 2021;43(3):230–236. doi: 10.1080/10641963.2020.1847131
- Sepehri Shamloo A, Schoene K, Stauber A, et al. Epicardial adipose tissue thickness as an independent predictor of ventricular tachycardia recurrence following ablation. Heart Rhythm. 2019;16(10):1492–1498. doi: 10.1016/j.hrthm.2019.06.009
- Jhuo S-J, Hsieh T-J, Tang W-H, et al. The association of the amounts of epicardial fat, P wave duration, and PR interval in electrocardiogram. J Electrocardiol. 2018;51(4):645–651. doi: 10.1016/j.jelectrocard.2018.04.009
- Hung W-C, Tang W-H, Wang C-P, et al. Increased epicardial adipose tissue volume is associated with PR interval prolongation. Clin Invest Med. 2015;38(2):E45–52. doi: 10.25011/cim.v38i1.22575
- Çiçek Y, Doğan S, Durakoğlugil ME, et al. The relationship between epicardial adipose tissue and P wave and QT dispersions. Turk Kardiyol Dern Ars. 2015;43(7):621–629. doi: 10.5543/tkda.2015.47598
- Jhuo S-J, Hsieh T-J, Tang W-H, et al. The association of the amounts of epicardial fat, P wave duration, and PR interval in electrocardiogram. J Electrocardiol. 2018;51(4):645–651. doi: 10.1016/j.jelectrocard.2018.04.009
- Fernandes-Cardoso A, Santos-Furtado M, Grindler J, et al. Epicardial fat thickness correlates with P-wave duration, left atrial size and decreased left ventricular systolic function in morbid obesity. Nutr Metab Cardiovasc Dis. 2017;27(8):731–738. doi: 10.1016/j.numecd.2017.05.009
- Quisi A, Sentürk SE, Harbalioglu H, et al. The relationship between echocardiographic epicardial adipose tissue, P-wave dispersion, and corrected QT interval. Turk Kardiyol Dern Ars. 2018;46(6):471–478. doi: 10.5543/TKDA.2018.01578
- Murthy S, Rizzi P, Mewton N, et al. Number of P-wave fragmentations on P-SAECG correlates with infiltrated atrial fat. Ann Noninvasive Electrocardiol. 2014;19(2):114–121. doi: 10.1111/anec.12084
- Chi P-C, Chang S-C, Yun C-H, et al. The associations between various ectopic visceral adiposity and body surface electrocardiographic alterations: potential differences between local and remote systemic effects. PLoS One. 2016;11(7):e0158300. doi: 10.1371/journal.pone.0158300
- Kwok CS, Rashid M, Beynon R, et al. Prolonged PR interval, first-degree heart block and adverse cardiovascular outcomes: a systematic review and meta-analysis. Heart. 2016;102(9):672–680. doi: 10.1136/heartjnl-2015-308956
- Bekar L, Kalçık M, Çelik O, et al. Presence of fragmented QRS is associated with increased epicardial adipose tissue thickness in hypertensive patients. J Clin Ultrasound. 2019;47(6):345–350. doi: 10.1002/jcu.22683
- Yaman M, Arslan U, Bayramoglu A, et al. The presence of fragmented QRS is associated with increased epicardial adipose tissue and subclinical myocardial dysfunction in healthy individuals. Rev Port Cardiol (Engl Ed). 2018;37(6):469–475. doi: 10.1016/j.repc.2017.09.022
- Khatib R, Sabir FRN, Omari C, et al. Managing drug-induced QT prolongation in clinical practice. Postgrad Med J. 2021;97(1149): 452–458. doi: 10.1136/postgradmedj-2020-138661
- Tse G, Gong M, Wong WT, et al. The Tpeak - Tend interval as an electrocardiographic risk marker of arrhythmic and mortality outcomes: A systematic review and meta-analysis. Heart Rhythm. 2017;14(8):1131–1137. doi: 10.1016/j.hrthm.2017.05.031
- Kaplan O, Kurtoglu E, Nar G, et al. Evaluation of electrocardiographic T-peak to T-end interval in subjects with increased epicardial fat tissue thickness. Arq Bras Cardiol. 2015;105(6):566–572. doi: 10.5935/abc.20150124
- Patel KHK, Jones TN, Sattler S, et al. Proarrhythmic electrophysiological and structural remodeling in rheumatoid arthritis. Am J Physiol Heart Circ Physiol. 2020;319(5):H1008–H1020. doi: 10.1152/ajpheart.00401.2020
- Monnerat G, Alarcón ML, Vasconcellos LR, et al. Macrophage-dependent IL-1b production induces cardiac arrhythmias in diabetic mice. Nat Commun. 2016;7:13344. doi: 10.1038/ncomms13344
- Kaese S, Verheule S. Cardiac electrophysiology in mice: a matter of size. Front Physiol. 2012;3:345. doi: 10.3389/fphys.2012.00345
- Aromolaran AS. Mechanisms of electrical remodeling in lipotoxic guinea pig heart. Biochem Biophys Res Commun. 2019;519(3): 639–644. doi: 10.1016/j.bbrc.2019.09.051
- Kato T, Iwasaki YK, Nattel S. Connexins and atrial fibrillation: filling in the gaps. Circulation. 2012;125(2):203–206. doi: 10.1161/CIRCULATIONAHA.111.075432
- González-Casanova JE, Durán-Agüero S, Caro-Fuentes NJ, et al. New Insights on the Role of Connexins and Gap Junctions Channels in Adipose Tissue and Obesity. Int J Mol Sci. 2021;22(2):12145. doi: 10.3390/ijms222212145
- Aitken-Buck HM, Moharram M, Babakr AA, et al. Relationship between epicardial adipose tissue thickness and epicardial adipocyte size with increasing body mass index. Adipocyte. 2019;8(1):412–420. doi: 10.1080/21623945.2019.1701387
- Egan Benova T, Viczenczova C, Szeiffova Bacova B, et al. Obesity-associated alterations in cardiac connexin-43 and PKC signaling are attenuated by melatonin and omega-3 fatty acids in female rats. Mol Cell Biochem. 2019;454(1-2):191–202. doi: 10.1007/s11010-018-3463-0
- Lazzerini PE, Laghi-Pasini F, Acampa M, et al. Systemic inflammation rapidly induces reversible atrial electrical remodeling: the role of interleukin-6-mediated changes in connexin expression. J Am Heart Assoc. 2019;8(16):e011006. doi: 10.1161/JAHA.118.011006
- George SA, Calhoun PJ, Gourdie RG, et al. TNFa modulates cardiac conduction by altering electrical coupling between myocytes. Front Physiol. 2017;8:334. doi: 10.3389/fphys.2017.00334
- Raisch TB, Yanoff MS, Larsen TR, et al. Intercalated disk extracellular nanodomain expansion in patients with atrial fibrillation. Front Physiol. 2018;9:398. doi: 10.3389/fphys.2018.00398
- Nalliah CJ, Bell JR, Raaijmakers AJ, et al. Epicardial adipose tissue accumulation confers atrial conduction abnormality. J Am Coll Cardiol. 2020;76(10):1197–1211. doi: 10.1016/j.jacc.2020.07.017
- Abe I, Teshima Y, Kondo H, et al. Association of fibrotic remodeling and cytokines/chemokines content in epicardial adipose tissue with atrial myocardial fibrosis in patients with atrial fibrillation. Heart Rhythm. 2018;15(11):1717–1727. doi: 10.1016/j.hrthm.2018.06.025
- Boixel C, Fontaine V, Rücker-Martin C, et al. Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat. J Am Coll Cardiol. 2003;42(2):336–344. doi: 10.1016/s0735-1097(03)00578-3
- Wang Q, Xi W, Yin L, et al. Human epicardial adipose tissue cTGF expression is an independent risk factor for atrial fibrillation and highly associated with atrial fibrosis. Sci Rep. 2018;8(1):3585. doi: 10.1038/s41598-018-21911-y
- Chaumont C, Suffee N, Gandjbakhch E, et al. Epicardial origin of cardiac arrhythmias: clinical evidences and pathophysiology. Cardiovasc Res. 2021;118(7):1693–1702. doi: 10.1093/cvr/cvab213
- Otsuka N, Okumura Y, Arai M, et al. Effect of obesity and epicardial fat/fatty infiltration on electrical and structural remodeling associated with atrial fibrillation in a novel canine model of obesity and atrial fibrillation: a comparative study. J Cardiovasc Electrophysiol. 2021;32(4):889–899. doi: 10.1111/jce.14955
- Lu Y-Y, Huang S-Y, Lin Y-K, et al. Epicardial adipose tissue modulates arrhythmogenesis in right ventricle outflow tract cardiomyocytes. Europace. 2021;23(6):970–977. doi: 10.1093/europace/euaa412
- Nakazato R, Rajani R, Cheng VY, et al. Weight change modulates epicardial fat burden: a 4-year serial study with non-contrast computed tomography. Atherosclerosis. 2012;220(1):139–144. doi: 10.1016/j.atherosclerosis.2011.10.014
- Jonker JT, de Mol P, de Vries ST, et al. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function. Radiology. 2013;269(2):434–442. doi: 10.1148/radiol.13121631
- Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring). 2008;16(7):1693–1697. doi: 10.1038/oby.2008.251
- Kim M-K, Tanaka K, Kim M-J, et al. Comparison of epicardial, abdominal and regional fat compartments in response to weight loss. Nutr Metab Cardiovasc Dis. 2009;19(11):760–766. doi: 10.1016/j.numecd.2009.01.010
- Rabkin SW, Campbell H. Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis. Obes Rev. 2015;16(5):406–415. doi: 10.1111/obr.12270
- Abed HS, Wittert GA, Leong DP, et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA. 2013;310(19):2050–2060. doi: 10.1001/jama.2013.280521
- Pathak RK, Middeldorp ME, Lau DH, et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARREST-AF cohort study. J Am Coll Cardiol. 2014;64(21):2222–2231. doi: 10.1016/j.jacc.2014.09.028
- Pathak RK, Middeldorp ME, Meredith M, et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY). J Am Coll Cardiol. 2015;65(20):2159–2169. doi: 10.1016/j.jacc.2015.03.002
- Middeldorp ME, Pathak RK, Meredith M, et al. PREVEntion and regReSsive Effect of weight-loss and risk factor modification on Atrial Fibrillation: the REVERSE-AF study. Europace. 2018;20(12): 1929–1935. doi: 10.1093/europace/euy117
- Omran J, Firwana B, Koerber S, et al. Effect of obesity and weight loss on ventricular repolarization: a systematic review and meta-analysis. Obes Rev. 2016;17(6):520–530. doi: 10.1111/obr.12390
- Tse G, Yan BP. Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. Europace. 2017;19(5):712–721. doi: 10.1093/europace/euw280
Supplementary files
