Epicardial Adipose Tissue and Cardiac Arrhythmias

Cover Page

Cite item

Full Text

Abstract

Obesity is associated with an increased risk of atrial and ventricular arrhythmias, including life-threatening ones. Epicardial adipose tissue (EAT) is located deep under the visceral pericardium (epicardium) and is therefore in direct contact with the underlying myocardium. In pathological conditions, EAT undergoes a phenotypic transition from a “neighbor” with protective properties to a substrate that secretes many substances that change the electrophysiology of cardiomyocytes by modulating ion currents that disrupt intercellular electrical connections and stimulate fibrosis. An excess of EAT can cause atrial and ventricular conduction disturbances, which are already evident with standard electrocardiography, predispose to the occurrence of the re-entry phenomenon and cardiac arrhythmias. Among the mechanisms of arrhythmogenesis under the influence of EAT, modulation of ion channels and gap junctions, fibrous remodeling and fatty infiltration are more often considered. However, most of these mechanisms have been studied in experimental studies and cannot easily be extrapolated to humans. There is convincing evidence of a direct relationship between EAT volume and the severity of atrial fibrillation, as well as the clinical benefit obtained from weight loss in patients with this arrhythmia. It is likely that the benefits of weight loss may extend to ventricular arrhythmias.

About the authors

Sergey G. Kanorskii

The Kuban State Medical University

Author for correspondence.
Email: kanorskysg@mail.ru
ORCID iD: 0000-0003-1510-9204
SPIN-code: 7635-5330
Scopus Author ID: 6701465286
ResearcherId: O-8743-2017

Head of the Department of Therapy

Russian Federation, Krasnodar

References

  1. Dai H, Alsalhe TA, Chalghaf N, et al. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: an analysis of the Global Burden of Disease Study. PLoS Med. 2020;17(7):e1003198. doi: 10.1371/journal.pmed.1003198
  2. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1223–1249. doi: 10.1016/S0140-6736(20)30752-2
  3. Obesity and overweight. June 9, 2021. WHO [cited: 2022 Mar 28]. Available from: https://www.who.int/ news-room/fact-sheets/detail/obesity-and-overweight
  4. Kivimäki M, Strandberg T, Pentti J, et al. Body-mass index and risk of obesity-related complex multimorbidity: an observational multicohort study. Lancet Diabetes Endocrinol. 2022;10(4):253–263. doi: 10.1016/S2213-8587(22)00033-X
  5. Cypess AM. Reassessing Human Adipose Tissue. N Engl J Med. 2022;386(8):768–779. doi: 10.1056/NEJMra2032804
  6. Aune D, Schlesinger S, Norat T, Riboli E. Body mass index, abdominal fatness, and the risk of sudden cardiac death: a systematic review and dose-response meta-analysis of prospective studies. Eur J Epidemiol. 2018;33(8):711–722. doi: 10.1007/s10654-017-0353-9
  7. Al-Kaisey AM, Kalman JM. Obesity and Atrial Fibrillation: Epidemiology, Pathogenesis and Effect of Weight Loss. Arrhythm Electrophysiol Rev. 2021;10(3):159–164. doi: 10.15420/aer.2021.36
  8. Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation. 2021;143(21):e984–e1010. doi: 10.1161/CIR.0000000000000973
  9. Kellman P, Hernando D, Arai AE. Myocardial Fat Imaging. Curr Cardiovasc Imaging Rep. 2010;3(2):83–91. doi: 10.1007/s12410-010-9012-1
  10. Rabkin SW. The relationship between epicardial fat and indices of obesity and the metabolic syndrome: a systematic review and meta-analysis. Metab Syndr Relat Disord. 2014;12(1):31–42. doi: 10.1089/met.2013.0107
  11. Mahajan R, Wong CX. Obesity and metabolic syndrome in atrial fibrillation: cardiac and noncardiac adipose tissue in atrial fibrillation. Card Electrophysiol Clin. 2021;13(1):77–86. doi: 10.1016/j.ccep.2020.11.006
  12. Zhou M, Wang H, Chen J, Zhao L. Epicardial adipose tissue and atrial fibrillation: Possible mechanisms, potential therapies, and future directions. Pacing Clin Electrophysiol. 2020;43(1):133–145. doi: 10.1111/pace.13825
  13. Tam W-C, Lin Y-K, Chan W-P, et al. Pericardial fat is associated with the risk of ventricular arrhythmia in Asian patients. Circ J. 2016;80(8):1726–1733. doi: 10.1253/circj.CJ-16-0047
  14. Wu C-K, Tsai H-Y, Su M-YM, et al. Pericardial fat is associated with ventricular tachyarrhythmia and mortality in patients with systolic heart failure. Atherosclerosis. 2015;241(2):607–614. doi: 10.1016/j.atherosclerosis.2015.05.025
  15. Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: a mini-review. Gerontology. 2012;58(1):15–23. doi: 10.1159/000321319
  16. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9(2):191–200. doi: 10.5114/aoms.2013.33181
  17. Thoonen R, Hindle AG, Scherrer-Crosbie M. Brown adipose tissue: the heat is on the heart. Am J Physiol Heart Circ Physiol. 2016;310(11):H1592–H1605. doi: 10.1152/ajpheart.00698.2015
  18. Wu J, Boström P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–376. doi: 10.1016/j.cell.2012.05.016
  19. Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022. doi: 10.1038/s41569-022-00679-9
  20. Sacks HS, Fain JN. Human epicardial fat: what is new and what is missing? Clin Exp Pharmacol Physiol. 2011;38(12):879–887. doi: 10.1111/j.1440-1681.2011.05601.x
  21. Xu A, Vanhoutte PM. Adiponectin and adipocyte fatty acid binding protein in the pathogenesis of cardiovascular disease. Am J Physiol Heart Circ Physiol. 2012;302(6):H1231–H1240. doi: 10.1152/ajpheart.00765.2011
  22. Parisi V, Rengo G, Perrone-Filardi P, et al. Increased epicardial adipose tissue volume correlates with cardiac sympathetic denervation in patients with heart failure. Circ Res. 2016;118(8): 1244–1253. doi: 10.1161/CIRCRESAHA.115.307765
  23. Drosatos K, Schulze PC. Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr Heart Fail Rep. 2013;10(2): 109–121. doi: 10.1007/s11897-013-0133-0
  24. Sobczak AIS, Blindauer CA, Stewart AJ. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients. 2019;11(9):2022. doi: 10.3390/nu11092022
  25. Ly LD, Xu S, Choi S-K, et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med. 2017;49(2):e291. doi: 10.1038/emm.2016.157
  26. Sovari AA. Cellular and molecular mechanisms of arrhythmia by oxidative stress. Cardiol Res Pract. 2016;2016:9656078. doi: 10.1155/2016/9656078
  27. Schuldiner M, Bohnert M. A different kind of love - lipid droplet contact sites. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862 (10 Pt B):1188–1196. doi: 10.1016/j.bbalip.2017.06.005
  28. Schulze PC, Drosatos K, Goldberg IJ. Lipid use and misuse by the heart. Circ Res. 2016;118(11):1736–1751. doi: 10.1161/CIRCRESAHA.116.306842
  29. Sahasrabuddhe AV, Pitale SU, Sivanesan SD, et al. Pathogenic gene expression of epicardial adipose tissue in patients with coronary artery disease. Indian J Med Res. 2020;151(6):554–561. doi: 10.4103/ijmr.IJMR 1374_18
  30. Gruzdeva OV, Dyleva YA, Belik EV, et al. Relationship between Epicardial and Coronary Adipose Tissue and the Expression of Adiponectin, Leptin, and Interleukin 6 in Patients with Coronary Artery Disease. J Pers Med. 2022;12(2):129. doi: 10.3390/jpm12020129
  31. Bambace C, Sepe A, Zoico E, et al. Inflammatory profile in subcutaneous and epicardial adipose tissue in men with and without diabetes. Heart Vessels. 2014;29(1):42–48. doi: 10.1007/s00380-012-0315-9
  32. Parisi V, Petraglia L, D'Esposito V, et al. Statin therapy modulates thickness and inflammatory profile of human epicardial adipose tissue. Int J Cardiol. 2019;274:326–330. doi: 10.1016/j.ijcard.2018.06.106
  33. Díaz-Rodríguez E, Agra RM, Fernández ÁL, et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc Res. 2018;114(2):336–346. doi: 10.1093/cvr/cvx186
  34. Patel KHK, Hwang T, Se Liebers C, Ng FS. Epicardial adipose tissue as a mediator of cardiac arrhythmias. Am J Physiol Heart Circ Physiol. 2022;322(2):H129–H144. doi: 10.1152/ajpheart.00565.2021
  35. Vyas V, Blythe H, Wood EG, et al. Obesity and diabetes are major risk factors for epicardial adipose tissue inflammation. JCI Insight. 2021;6(16):e145495. doi: 10.1172/jci.insight.145495
  36. Hamjane N, Benyahya F, Nourouti NG, et al. Cardiovascular diseases and metabolic abnormalities associated with obesity: What is the role of inflammatory responses? A systematic review. Microvasc Res. 2020;131:104023. doi: 10.1016/j.mvr.2020.104023
  37. Asad Z, Abbas M, Javed I, et al. Obesity is associated with incident atrial fibrillation independent of gender: A meta-analysis. J Cardiovasc Electrophysiol. 2018;29(5):725–732. doi: 10.1111/jce.13458
  38. Mahajan R, Nelson A, Pathak RK, et al. Electroanatomical Remodeling of the Atria in Obesity: Impact of Adjacent Epicardial Fat. JACC Clin Electrophysiol. 2018;4(12):1529–1540. doi: 10.1016/j.jacep.2018.08.014
  39. Mahajan R, Lau DH, Brooks AG, et al. Atrial Fibrillation and Obesity: Reverse Remodeling of Atrial Substrate With Weight Reduction. JACC Clin Electrophysiol. 2021;7(5):630–641. doi: 10.1016/j.jacep.2020.11.015
  40. Lee JJ, Yin X, Hoffmann U, et al. Relation of Pericardial Fat, Intrathoracic Fat, and Abdominal Visceral Fat With Incident Atrial Fibrillation (from the Framingham Heart Study). Am J Cardiol. 2016;118(10):1486–1492. doi: 10.1016/j.amjcard.2016.08.011
  41. van Rosendael AR, Smit JM, El'Mahdiui M, et al. Association between left atrial epicardial fat, left atrial volume, and the severity of atrial fibrillation. Europace. 2022:euac031. doi: 10.1093/europace/euac031
  42. Gaeta M, Bandera F, Tassinari F, et al. Is epicardial fat depot associated with atrial fibrillation? A systematic review and meta-analysis. Europace. 2017;19(5):747–752. doi: 10.1093/europace/euw398
  43. Wong CX, Sun MT, Odutayo A, et al. Associations of epicardial, abdominal, and overall adiposity with atrial fibrillation. Circ Arrhythm Electrophysiol. 2016;9(12):e004378. doi: 10.1161/CIRCEP.116.004378
  44. Sepehri Shamloo A, Dagres N, Dinov B, et al. Is epicardial fat tissue associated with atrial fibrillation recurrence after ablation? A systematic review and meta-analysis. Int J Cardiol Heart Vasc. 2019;22:132–138. doi: 10.1016/j.ijcha.2019.01.003
  45. Canpolat U, Aytemir K, Yorgun H, et al. The impact of echocardiographic epicardial fat thickness on outcomes of cryoballoon-based atrial fibrillation ablation. Echocardiography. 2016;33(6):821–829. doi: 10.1111/echo.13193
  46. Tam WC, Lin YK, Chan WP, et al. Pericardial Fat Is Associated With the Risk of Ventricular Arrhythmia in Asian Patients. Circ J. 2016;80(8):1726–1733. doi: 10.1253/circj.CJ-16-0047
  47. Yılmaz AS, Çinier G, Çırakoğlu ÖF, Cetin M. Epicardial adipose tissue predicted prolonged QTc interval in patients with arterial hypertension. Clin Exp Hypertens. 2021;43(3):230–236. doi: 10.1080/10641963.2020.1847131
  48. Sepehri Shamloo A, Schoene K, Stauber A, et al. Epicardial adipose tissue thickness as an independent predictor of ventricular tachycardia recurrence following ablation. Heart Rhythm. 2019;16(10):1492–1498. doi: 10.1016/j.hrthm.2019.06.009
  49. Jhuo S-J, Hsieh T-J, Tang W-H, et al. The association of the amounts of epicardial fat, P wave duration, and PR interval in electrocardiogram. J Electrocardiol. 2018;51(4):645–651. doi: 10.1016/j.jelectrocard.2018.04.009
  50. Hung W-C, Tang W-H, Wang C-P, et al. Increased epicardial adipose tissue volume is associated with PR interval prolongation. Clin Invest Med. 2015;38(2):E45–52. doi: 10.25011/cim.v38i1.22575
  51. Çiçek Y, Doğan S, Durakoğlugil ME, et al. The relationship between epicardial adipose tissue and P wave and QT dispersions. Turk Kardiyol Dern Ars. 2015;43(7):621–629. doi: 10.5543/tkda.2015.47598
  52. Jhuo S-J, Hsieh T-J, Tang W-H, et al. The association of the amounts of epicardial fat, P wave duration, and PR interval in electrocardiogram. J Electrocardiol. 2018;51(4):645–651. doi: 10.1016/j.jelectrocard.2018.04.009
  53. Fernandes-Cardoso A, Santos-Furtado M, Grindler J, et al. Epicardial fat thickness correlates with P-wave duration, left atrial size and decreased left ventricular systolic function in morbid obesity. Nutr Metab Cardiovasc Dis. 2017;27(8):731–738. doi: 10.1016/j.numecd.2017.05.009
  54. Quisi A, Sentürk SE, Harbalioglu H, et al. The relationship between echocardiographic epicardial adipose tissue, P-wave dispersion, and corrected QT interval. Turk Kardiyol Dern Ars. 2018;46(6):471–478. doi: 10.5543/TKDA.2018.01578
  55. Murthy S, Rizzi P, Mewton N, et al. Number of P-wave fragmentations on P-SAECG correlates with infiltrated atrial fat. Ann Noninvasive Electrocardiol. 2014;19(2):114–121. doi: 10.1111/anec.12084
  56. Chi P-C, Chang S-C, Yun C-H, et al. The associations between various ectopic visceral adiposity and body surface electrocardiographic alterations: potential differences between local and remote systemic effects. PLoS One. 2016;11(7):e0158300. doi: 10.1371/journal.pone.0158300
  57. Kwok CS, Rashid M, Beynon R, et al. Prolonged PR interval, first-degree heart block and adverse cardiovascular outcomes: a systematic review and meta-analysis. Heart. 2016;102(9):672–680. doi: 10.1136/heartjnl-2015-308956
  58. Bekar L, Kalçık M, Çelik O, et al. Presence of fragmented QRS is associated with increased epicardial adipose tissue thickness in hypertensive patients. J Clin Ultrasound. 2019;47(6):345–350. doi: 10.1002/jcu.22683
  59. Yaman M, Arslan U, Bayramoglu A, et al. The presence of fragmented QRS is associated with increased epicardial adipose tissue and subclinical myocardial dysfunction in healthy individuals. Rev Port Cardiol (Engl Ed). 2018;37(6):469–475. doi: 10.1016/j.repc.2017.09.022
  60. Khatib R, Sabir FRN, Omari C, et al. Managing drug-induced QT prolongation in clinical practice. Postgrad Med J. 2021;97(1149): 452–458. doi: 10.1136/postgradmedj-2020-138661
  61. Tse G, Gong M, Wong WT, et al. The Tpeak - Tend interval as an electrocardiographic risk marker of arrhythmic and mortality outcomes: A systematic review and meta-analysis. Heart Rhythm. 2017;14(8):1131–1137. doi: 10.1016/j.hrthm.2017.05.031
  62. Kaplan O, Kurtoglu E, Nar G, et al. Evaluation of electrocardiographic T-peak to T-end interval in subjects with increased epicardial fat tissue thickness. Arq Bras Cardiol. 2015;105(6):566–572. doi: 10.5935/abc.20150124
  63. Patel KHK, Jones TN, Sattler S, et al. Proarrhythmic electrophysiological and structural remodeling in rheumatoid arthritis. Am J Physiol Heart Circ Physiol. 2020;319(5):H1008–H1020. doi: 10.1152/ajpheart.00401.2020
  64. Monnerat G, Alarcón ML, Vasconcellos LR, et al. Macrophage-dependent IL-1b production induces cardiac arrhythmias in diabetic mice. Nat Commun. 2016;7:13344. doi: 10.1038/ncomms13344
  65. Kaese S, Verheule S. Cardiac electrophysiology in mice: a matter of size. Front Physiol. 2012;3:345. doi: 10.3389/fphys.2012.00345
  66. Aromolaran AS. Mechanisms of electrical remodeling in lipotoxic guinea pig heart. Biochem Biophys Res Commun. 2019;519(3): 639–644. doi: 10.1016/j.bbrc.2019.09.051
  67. Kato T, Iwasaki YK, Nattel S. Connexins and atrial fibrillation: filling in the gaps. Circulation. 2012;125(2):203–206. doi: 10.1161/CIRCULATIONAHA.111.075432
  68. González-Casanova JE, Durán-Agüero S, Caro-Fuentes NJ, et al. New Insights on the Role of Connexins and Gap Junctions Channels in Adipose Tissue and Obesity. Int J Mol Sci. 2021;22(2):12145. doi: 10.3390/ijms222212145
  69. Aitken-Buck HM, Moharram M, Babakr AA, et al. Relationship between epicardial adipose tissue thickness and epicardial adipocyte size with increasing body mass index. Adipocyte. 2019;8(1):412–420. doi: 10.1080/21623945.2019.1701387
  70. Egan Benova T, Viczenczova C, Szeiffova Bacova B, et al. Obesity-associated alterations in cardiac connexin-43 and PKC signaling are attenuated by melatonin and omega-3 fatty acids in female rats. Mol Cell Biochem. 2019;454(1-2):191–202. doi: 10.1007/s11010-018-3463-0
  71. Lazzerini PE, Laghi-Pasini F, Acampa M, et al. Systemic inflammation rapidly induces reversible atrial electrical remodeling: the role of interleukin-6-mediated changes in connexin expression. J Am Heart Assoc. 2019;8(16):e011006. doi: 10.1161/JAHA.118.011006
  72. George SA, Calhoun PJ, Gourdie RG, et al. TNFa modulates cardiac conduction by altering electrical coupling between myocytes. Front Physiol. 2017;8:334. doi: 10.3389/fphys.2017.00334
  73. Raisch TB, Yanoff MS, Larsen TR, et al. Intercalated disk extracellular nanodomain expansion in patients with atrial fibrillation. Front Physiol. 2018;9:398. doi: 10.3389/fphys.2018.00398
  74. Nalliah CJ, Bell JR, Raaijmakers AJ, et al. Epicardial adipose tissue accumulation confers atrial conduction abnormality. J Am Coll Cardiol. 2020;76(10):1197–1211. doi: 10.1016/j.jacc.2020.07.017
  75. Abe I, Teshima Y, Kondo H, et al. Association of fibrotic remodeling and cytokines/chemokines content in epicardial adipose tissue with atrial myocardial fibrosis in patients with atrial fibrillation. Heart Rhythm. 2018;15(11):1717–1727. doi: 10.1016/j.hrthm.2018.06.025
  76. Boixel C, Fontaine V, Rücker-Martin C, et al. Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat. J Am Coll Cardiol. 2003;42(2):336–344. doi: 10.1016/s0735-1097(03)00578-3
  77. Wang Q, Xi W, Yin L, et al. Human epicardial adipose tissue cTGF expression is an independent risk factor for atrial fibrillation and highly associated with atrial fibrosis. Sci Rep. 2018;8(1):3585. doi: 10.1038/s41598-018-21911-y
  78. Chaumont C, Suffee N, Gandjbakhch E, et al. Epicardial origin of cardiac arrhythmias: clinical evidences and pathophysiology. Cardiovasc Res. 2021;118(7):1693–1702. doi: 10.1093/cvr/cvab213
  79. Otsuka N, Okumura Y, Arai M, et al. Effect of obesity and epicardial fat/fatty infiltration on electrical and structural remodeling associated with atrial fibrillation in a novel canine model of obesity and atrial fibrillation: a comparative study. J Cardiovasc Electrophysiol. 2021;32(4):889–899. doi: 10.1111/jce.14955
  80. Lu Y-Y, Huang S-Y, Lin Y-K, et al. Epicardial adipose tissue modulates arrhythmogenesis in right ventricle outflow tract cardiomyocytes. Europace. 2021;23(6):970–977. doi: 10.1093/europace/euaa412
  81. Nakazato R, Rajani R, Cheng VY, et al. Weight change modulates epicardial fat burden: a 4-year serial study with non-contrast computed tomography. Atherosclerosis. 2012;220(1):139–144. doi: 10.1016/j.atherosclerosis.2011.10.014
  82. Jonker JT, de Mol P, de Vries ST, et al. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function. Radiology. 2013;269(2):434–442. doi: 10.1148/radiol.13121631
  83. Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring). 2008;16(7):1693–1697. doi: 10.1038/oby.2008.251
  84. Kim M-K, Tanaka K, Kim M-J, et al. Comparison of epicardial, abdominal and regional fat compartments in response to weight loss. Nutr Metab Cardiovasc Dis. 2009;19(11):760–766. doi: 10.1016/j.numecd.2009.01.010
  85. Rabkin SW, Campbell H. Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis. Obes Rev. 2015;16(5):406–415. doi: 10.1111/obr.12270
  86. Abed HS, Wittert GA, Leong DP, et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA. 2013;310(19):2050–2060. doi: 10.1001/jama.2013.280521
  87. Pathak RK, Middeldorp ME, Lau DH, et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARREST-AF cohort study. J Am Coll Cardiol. 2014;64(21):2222–2231. doi: 10.1016/j.jacc.2014.09.028
  88. Pathak RK, Middeldorp ME, Meredith M, et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY). J Am Coll Cardiol. 2015;65(20):2159–2169. doi: 10.1016/j.jacc.2015.03.002
  89. Middeldorp ME, Pathak RK, Meredith M, et al. PREVEntion and regReSsive Effect of weight-loss and risk factor modification on Atrial Fibrillation: the REVERSE-AF study. Europace. 2018;20(12): 1929–1935. doi: 10.1093/europace/euy117
  90. Omran J, Firwana B, Koerber S, et al. Effect of obesity and weight loss on ventricular repolarization: a systematic review and meta-analysis. Obes Rev. 2016;17(6):520–530. doi: 10.1111/obr.12390
  91. Tse G, Yan BP. Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. Europace. 2017;19(5):712–721. doi: 10.1093/europace/euw280

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Kanorskii S.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».