Эпикардиальная жировая ткань и аритмии сердца
- Авторы: Канорский С.Г.1
-
Учреждения:
- Кубанский государственный медицинский университет Минздрава России
- Выпуск: Том 2, № 2 (2022)
- Страницы: 5-18
- Раздел: Обзоры
- URL: https://journals.rcsi.science/cardar/article/view/107112
- DOI: https://doi.org/10.17816/cardar107112
- ID: 107112
Цитировать
Полный текст
Аннотация
Ожирение связано с повышенным риском предсердных и желудочковых аритмий, в том числе угрожающих жизни. Эпикардиальная жировая ткань (ЭЖТ) локализуется глубоко под висцеральным перикардом (эпикардом) и, следовательно, находится в непосредственном контакте с нижележащим миокардом. При патологических состояниях ЭЖТ претерпевает фенотипический переход от «соседа» с защитными свойствами к субстрату, секретирующему множество веществ, которые изменяют электрофизиологию кардиомиоцитов путем модуляции ионных токов, нарушающих межклеточные электрические связи пациентов стимулирующих фиброз. Избыток ЭЖТ способен вызывать нарушения предсердной и желудочковой проводимости, которые очевидны уже при стандартной электрокардиографии, предрасполагать к возникновению феномена re-entry и аритмиям сердца. Среди механизмов аритмогенеза под влиянием ЭЖТ чаще рассматриваются модуляция ионных каналов и щелевых контактов, фиброзное ремоделирование и жировая инфильтрация. Однако большинство этих механизмов изучены в экспериментальных исследованиях и не могут быть легко экстраполированы на человека. Убедительно доказана прямая связь между объемом ЭЖТ и тяжестью течения фибрилляции предсердий, а также клиническая выгода, получаемая при снижении массы тела у пациентов с этой аритмией. Вполне вероятно, что польза от потери веса может распространяться и на желудочковые аритмии.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Сергей Григорьевич Канорский
Кубанский государственный медицинский университет Минздрава России
Автор, ответственный за переписку.
Email: kanorskysg@mail.ru
ORCID iD: 0000-0003-1510-9204
SPIN-код: 7635-5330
Scopus Author ID: 6701465286
ResearcherId: O-8743-2017
заведующий кафедрой терапии
Россия, КраснодарСписок литературы
- Dai H., Alsalhe T.A., Chalghaf N., et al. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: an analysis of the Global Burden of Disease Study // PLoS Med. 2020. Vol. 17, No. 7. ID e1003198. doi: 10.1371/journal.pmed.1003198
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019 // Lancet. 2020. Vol. 396, No. 10258. P. 1223–1249. doi: 10.1016/S0140-6736(20)30752-2
- Obesity and overweight. June 9, 2021 // WHO [дата обращения: 28.03.2022]. Доступ по ссылке: https://www.who.int/ news-room/fact-sheets/detail/obesity-and-overweight
- Kivimäki M., Strandberg T., Pentti J., et al. Body-mass index and risk of obesity-related complex multimorbidity: an observational multicohort study // Lancet Diabetes Endocrinol. 2022. Vol. 10, No. 4. P. 253–263. doi: 10.1016/S2213-8587(22)00033-X
- Cypess A.M. Reassessing Human Adipose Tissue // N Engl J Med. 2022. Vol. 386, No. 8. P. 768–779. doi: 10.1056/NEJMra2032804
- Aune D., Schlesinger S., Norat T., Riboli E. Body mass index, abdominal fatness, and the risk of sudden cardiac death: a systematic review and dose-response meta-analysis of prospective studies // Eur J Epidemiol. 2018. Vol. 33, No. 8. P. 711–722. doi: 10.1007/s10654-017-0353-9
- Al-Kaisey A.M., Kalman J.M. Obesity and Atrial Fibrillation: Epidemiology, Pathogenesis and Effect of Weight Loss // Arrhythm Electrophysiol Rev. 2021. Vol. 10, No. 3. P. 159–164. doi: 10.15420/aer.2021.36
- Powell-Wiley T.M., Poirier P., Burke L.E., et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association // Circulation. 2021. Vol. 143, No. 21. P. e984–e1010. doi: 10.1161/CIR.0000000000000973
- Kellman P., Hernando D., Arai A.E. Myocardial Fat Imaging // Curr Cardiovasc Imaging Rep. 2010. Vol. 3, No. 2. P. 83–91. doi: 10.1007/s12410-010-9012-1
- Rabkin S.W. The relationship between epicardial fat and indices of obesity and the metabolic syndrome: a systematic review and meta-analysis // Metab Syndr Relat Disord. 2014. Vol. 12, No. 1. P. 31–42. doi: 10.1089/met.2013.0107
- Mahajan R., Wong C.X. Obesity and metabolic syndrome in atrial fibrillation: cardiac and noncardiac adipose tissue in atrial fibrillation // Card Electrophysiol Clin. 2021. Vol. 13, No. 1. P. 77–86. doi: 10.1016/j.ccep.2020.11.006
- Zhou M., Wang H., Chen J., Zhao L. Epicardial adipose tissue and atrial fibrillation: Possible mechanisms, potential therapies, and future directions // Pacing Clin Electrophysiol. 2020. Vol. 43, No. 1. P. 133–145. doi: 10.1111/pace.13825
- Tam W.-C., Lin Y.-K., Chan W.-P., et al. Pericardial fat is associated with the risk of ventricular arrhythmia in Asian patients // Circ J. 2016. Vol. 80, No. 8. P. 1726–1733. doi: 10.1253/circj.CJ-16-0047
- Wu C.-K., Tsai H.-Y., Su M.-Y.M., et al. Pericardial fat is associated with ventricular tachyarrhythmia and mortality in patients with systolic heart failure // Atherosclerosis. 2015. Vol. 241, No. 2. P. 607–614. doi: 10.1016/j.atherosclerosis.2015.05.025
- Saely C.H., Geiger K., Drexel H. Brown versus white adipose tissue: a mini-review // Gerontology. 2012. Vol. 58, No. 1. P. 15–23. doi: 10.1159/000321319
- Coelho M., Oliveira T., Fernandes R. Biochemistry of adipose tissue: an endocrine organ // Arch Med Sci. 2013. Vol. 9, No. 2. P. 191–200. doi: 10.5114/aoms.2013.33181
- Thoonen R., Hindle A.G., Scherrer-Crosbie M. Brown adipose tissue: the heat is on the heart // Am J Physiol Heart Circ Physiol. 2016. Vol. 310, No. 11. P. H1592–H1605. doi: 10.1152/ajpheart.00698.2015
- Wu J., Boström P., Sparks L.M., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human // Cell. 2012. Vol. 150, No. 2. P. 366–376. doi: 10.1016/j.cell.2012.05.016
- Iacobellis G. Epicardial adipose tissue in contemporary cardiology // Nat Rev Cardiol. 2022. doi: 10.1038/s41569-022-00679-9
- Sacks H.S., Fain J.N. Human epicardial fat: what is new and what is missing? // Clin Exp Pharmacol Physiol. 2011. Vol. 38, No. 12. P. 879–887. doi: 10.1111/j.1440-1681.2011.05601.x
- Xu A., Vanhoutte P.M. Adiponectin and adipocyte fatty acid binding protein in the pathogenesis of cardiovascular disease // Am J Physiol Heart Circ Physiol. 2012. Vol. 302, No. 6. P. H1231–H1240. doi: 10.1152/ajpheart.00765.2011
- Parisi V., Rengo G., Perrone-Filardi P., et al. Increased epicardial adipose tissue volume correlates with cardiac sympathetic denervation in patients with heart failure // Circ Res. 2016. Vol. 118, No. 8. P. 1244–1253. doi: 10.1161/CIRCRESAHA.115.307765
- Drosatos K., Schulze P.C. Cardiac lipotoxicity: molecular pathways and therapeutic implications // Curr Heart Fail Rep. 2013. Vol. 10, No. 2. P. 109–121. doi: 10.1007/s11897-013-0133-0
- Sobczak A.I.S., Blindauer C.A., Stewart A.J. Changes in plasma free fatty acids associated with type-2 diabetes // Nutrients. 2019. Vol. 11, No. 9. ID 2022. doi: 10.3390/nu11092022
- Ly L.D., Xu S., Choi S.-K., et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes // Exp Mol Med. 2017. Vol. 49, No. 2. ID e291. doi: 10.1038/emm.2016.157
- Sovari A.A. Cellular and molecular mechanisms of arrhythmia by oxidative stress // Cardiol Res Pract. 2016. Vol. 2016. ID 9656078. doi: 10.1155/2016/9656078
- Schuldiner M., Bohnert M. A different kind of love - lipid droplet contact sites // Biochim Biophys Acta Mol Cell Biol Lipids. 2017. Vol. 1862, No. 10 Pt B. P. 1188–1196. doi: 10.1016/j.bbalip.2017.06.005
- Schulze P.C., Drosatos K., Goldberg I.J. Lipid use and misuse by the heart // Circ Res. 2016. Vol. 118, No. 11. P. 1736–1751. doi: 10.1161/CIRCRESAHA.116.306842
- Sahasrabuddhe A.V., Pitale S.U., Sivanesan S.D., et al. Pathogenic gene expression of epicardial adipose tissue in patients with coronary artery disease // Indian J Med Res. 2020. Vol. 151, No. 6. P. 554–561. doi: 10.4103/ijmr.IJMR 1374_18
- Gruzdeva O.V., Dyleva Y.A., Belik E.V., et al. Relationship between Epicardial and Coronary Adipose Tissue and the Expression of Adiponectin, Leptin, and Interleukin 6 in Patients with Coronary Artery Disease // J Pers Med. 2022. Vol. 12, No. 2. ID 129. doi: 10.3390/jpm12020129
- Bambace C., Sepe A., Zoico E., et al. Inflammatory profile in subcutaneous and epicardial adipose tissue in men with and without diabetes // Heart Vessels. 2014. Vol. 29, No. 1. P. 42–48. doi: 10.1007/s00380-012-0315-9
- Parisi V., Petraglia L., D'Esposito V., et al. Statin therapy modulates thickness and inflammatory profile of human epicardial adipose tissue // Int J Cardiol. 2019. Vol. 274. P. 326–330. doi: 10.1016/j.ijcard.2018.06.106
- Díaz-Rodríguez E., Agra R.M., Fernández Á.L., et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability // Cardiovasc Res. 2018. Vol. 114, No. 2. P. 336–346. doi: 10.1093/cvr/cvx186
- Patel K.H.K., Hwang T., Se Liebers C., Ng F.S. Epicardial adipose tissue as a mediator of cardiac arrhythmias // Am J Physiol Heart Circ Physiol. 2022. Vol. 322, No. 2. P. H129–H144. doi: 10.1152/ajpheart.00565.2021
- Vyas V., Blythe H., Wood E.G., et al. Obesity and diabetes are major risk factors for epicardial adipose tissue inflammation // JCI Insight. 2021. Vol. 6, No. 16. ID e145495. doi: 10.1172/jci.insight.145495
- Hamjane N., Benyahya F., Nourouti N.G., et al. Cardiovascular diseases and metabolic abnormalities associated with obesity: What is the role of inflammatory responses? A systematic review // Microvasc Res. 2020. Vol. 131. ID 104023. doi: 10.1016/j.mvr.2020.104023
- Asad Z., Abbas M., Javed I., et al. Obesity is associated with incident atrial fibrillation independent of gender: A meta-analysis // J Cardiovasc Electrophysiol. 2018. Vol. 29, No. 5. P. 725–732. doi: 10.1111/jce.13458
- Mahajan R., Nelson A., Pathak R.K., et al. Electroanatomical Remodeling of the Atria in Obesity: Impact of Adjacent Epicardial Fat // Turk Kardiyol Dern Ars. 2015. Vol. 43, No. 7. P. 621–629. doi: 10.5543/tkda.2015.47598
- Jhuo S.-J., Hsieh T.-J., Tang W.-H., et al. The association of the amounts of epicardial fat, P wave duration, and PR interval in electrocardiogram // J Electrocardiol. 2018. Vol. 51, No. 4. P. 645–651. doi: 10.1016/j.jelectrocard.2018.04.009
- Fernandes-Cardoso A., Santos-Furtado M., Grindler J., et al. Epicardial fat thickness correlates with P-wave duration, left atrial size and decreased left ventricular systolic function in morbid obesity // Nutr Metab Cardiovasc Dis. 2017. Vol. 27, No. 8. P. 731–738. doi: 10.1016/j.numecd.2017.05.009
- Quisi A., Sentürk S.E., Harbalioglu H., et al. The relationship between echocardiographic epicardial adipose tissue, P-wave dispersion, and corrected QT interval // Turk Kardiyol Dern Ars. 2018. Vol. 46, No. 6. P. 471–478. doi: 10.5543/TKDA.2018.01578
- Murthy S., Rizzi P., Mewton N., et al. Number of P-wave fragmentations on P-SAECG correlates with infiltrated atrial fat // Ann Noninvasive Electrocardiol. 2014. Vol. 19, No. 2. P. 114–121. doi: 10.1111/anec.12084
- Chi P.-C., Chang S.-C., Yun C.-H., et al. The associations between various ectopic visceral adiposity and body surface electrocardiographic alterations: potential differences between local and remote systemic effects // PLoS One. 2016. Vol. 11, No. 7. ID e0158300. doi: 10.1371/journal.pone.0158300
- Kwok C.S., Rashid M., Beynon R., et al. Prolonged PR interval, first-degree heart block and adverse cardiovascular outcomes: a systematic review and meta-analysis // Heart. 2016. Vol. 102, No. 9. P. 672–680. doi: 10.1136/heartjnl-2015-308956
- Bekar L., Kalçık M., Çelik O., et al. Presence of fragmented QRS is associated with increased epicardial adipose tissue thickness in hypertensive patients // J Clin Ultrasound. 2019. Vol. 47, No. 6. P. 345–350. doi: 10.1002/jcu.22683
- Yaman M., Arslan U., Bayramoglu A., et al. The presence of fragmented QRS is associated with increased epicardial adipose tissue and subclinical myocardial dysfunction in healthy individuals // Rev Port Cardiol (Engl Ed). 2018. Vol. 37, No. 6. P. 469–475. doi: 10.1016/j.repc.2017.09.022
- Khatib R., Sabir F.R.N., Omari C., et al. Managing drug-induced QT prolongation in clinical practice // Postgrad Med J. 2021. Vol. 97, No. 1149. P. 452–458. doi: 10.1136/postgradmedj-2020-138661
- Tse G., Gong M., Wong W.T., et al. The Tpeak - Tend interval as an electrocardiographic risk marker of arrhythmic and mortality outcomes: A systematic review and meta-analysis // Heart Rhythm. 2017. Vol. 14, No. 8. P. 1131–1137. doi: 10.1016/j.hrthm.2017.05.031
- Kaplan O., Kurtoglu E., Nar G., et al. Evaluation of electrocardiographic T-peak to T-end interval in subjects with increased epicardial fat tissue thickness // Arq Bras Cardiol. 2015. Vol. 105, No. 6. P. 566–572. doi: 10.5935/abc.20150124
- Patel K.H.K., Jones T.N., Sattler S., et al. Proarrhythmic electrophysiological and structural remodeling in rheumatoid arthritis // Am J Physiol Heart Circ Physiol. 2020. Vol. 319, No. 5. P. H1008–H1020. doi: 10.1152/ajpheart.00401.2020
- Monnerat G., Alarcón M.L., Vasconcellos L.R., et al. Macrophage-dependent IL-1b production induces cardiac arrhythmias in diabetic mice // Nat Commun. 2016. Vol. 7. ID 13344. doi: 10.1038/ncomms13344
- Kaese S., Verheule S. Cardiac electrophysiology in mice: a matter of size // Front Physiol. 2012. Vol. 3. P. 345. doi: 10.3389/fphys.2012.00345
- Aromolaran A.S. Mechanisms of electrical remodeling in lipotoxic guinea pig heart // Biochem Biophys Res Commun. 2019. Vol. 519, No. 3. P. 639–644. doi: 10.1016/j.bbrc.2019.09.051
- Kato T., Iwasaki Y.K., Nattel S. Connexins and atrial fibrillation: filling in the gaps // Circulation. 2012. Vol. 125, No. 2. P. 203–206. doi: 10.1161/CIRCULATIONAHA.111.075432
- González-Casanova J.E., Durán-Agüero S., Caro-Fuentes N.J., et al. New Insights on the Role of Connexins and Gap Junctions Channels in Adipose Tissue and Obesity // Int J Mol Sci. 2021. Vol. 22, No. 2. ID 12145. doi: 10.3390/ijms222212145
- Aitken-Buck H.M., Moharram M., Babakr A.A., et al. Relationship between epicardial adipose tissue thickness and epicardial adipocyte size with increasing body mass index // Adipocyte. 2019. Vol. 8, No. 1. P. 412–420. doi: 10.1080/21623945.2019.1701387
- Egan Benova T., Viczenczova C., Szeiffova Bacova B., et al. Obesity-associated alterations in cardiac connexin-43 and PKC signaling are attenuated by melatonin and omega-3 fatty acids in female rats // Mol Cell Biochem. 2019. Vol. 454, No. 1-2. P. 191–202. doi: 10.1007/s11010-018-3463-0
- Lazzerini P.E., Laghi-Pasini F., Acampa M., et al. Systemic inflammation rapidly induces reversible atrial electrical remodeling: the role of interleukin-6-mediated changes in connexin expression // J Am Heart Assoc. 2019. Vol. 8, No. 16. ID e011006. doi: 10.1161/JAHA.118.011006
- George S.A., Calhoun P.J., Gourdie R.G., et al. TNFa modulates cardiac conduction by altering electrical coupling between myocytes // Front Physiol. 2017. Vol. 8. P. 334. doi: 10.3389/fphys.2017.00334
- Raisch T.B., Yanoff M.S., Larsen T.R., et al. Intercalated disk extracellular nanodomain expansion in patients with atrial fibrillation // Front Physiol. 2018. Vol. 9. P. 398. doi: 10.3389/fphys.2018.00398
- Nalliah C.J., Bell J.R., Raaijmakers A.J., et al. Epicardial adipose tissue accumulation confers atrial conduction abnormality // J Am Coll Cardiol. 2020. Vol. 76, No. 10. P. 1197–1211. doi: 10.1016/j.jacc.2020.07.017
- Abe I., Teshima Y., Kondo H., et al. Association of fibrotic remodeling and cytokines/chemokines content in epicardial adipose tissue with atrial myocardial fibrosis in patients with atrial fibrillation // Heart Rhythm. 2018. Vol. 15, No. 11. P. 1717–1727. doi: 10.1016/j.hrthm.2018.06.025
- Boixel C., Fontaine V., Rücker-Martin C., et al. Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat // J Am Coll Cardiol. 2003. Vol. 42, No. 2. P. 336–344. doi: 10.1016/s0735-1097(03)00578-3
- Wang Q., Xi W., Yin L., et al. Human epicardial adipose tissue cTGF expression is an independent risk factor for atrial fibrillation and highly associated with atrial fibrosis // Sci Rep. 2018. Vol. 8, No. 1. ID 3585. doi: 10.1038/s41598-018-21911-y
- Chaumont C., Suffee N., Gandjbakhch E., et al. Epicardial origin of cardiac arrhythmias: clinical evidences and pathophysiology // Cardiovasc Res. 2021. Vol. 118, No. 7. P. 1693–1702. doi: 10.1093/cvr/cvab213
- Otsuka N., Okumura Y., Arai M., et al. Effect of obesity and epicardial fat/fatty infiltration on electrical and structural remodeling associated with atrial fibrillation in a novel canine model of obesity and atrial fibrillation: a comparative study // J Cardiovasc Electrophysiol. 2021. Vol. 32, No. 4. P. 889–899. doi: 10.1111/jce.14955
- Lu Y.-Y., Huang S.-Y., Lin Y.-K., et al. Epicardial adipose tissue modulates arrhythmogenesis in right ventricle outflow tract cardiomyocytes // Europace. 2021. Vol. 23, No. 6. P. 970–977. doi: 10.1093/europace/euaa412
- Nakazato R., Rajani R., Cheng V.Y., et al. Weight change modulates epicardial fat burden: a 4-year serial study with non-contrast computed tomography // Atherosclerosis. 2012. Vol. 220, No. 1. P. 139–144. doi: 10.1016/j.atherosclerosis.2011.10.014
- Jonker J.T., de Mol P., de Vries S.T., et al. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function // Radiology. 2013. Vol. 269, No. 2. P. 434–442. doi: 10.1148/radiol.13121631
- Iacobellis G., Singh N., Wharton S., Sharma A.M. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects // Obesity (Silver Spring). 2008. Vol. 16, No. 7. P. 1693–1697. doi: 10.1038/oby.2008.251
- Kim M.-K., Tanaka K., Kim M.-J., et al. Comparison of epicardial, abdominal and regional fat compartments in response to weight loss // Nutr Metab Cardiovasc Dis. 2009. Vol. 19, No. 11. P. 760–766. doi: 10.1016/j.numecd.2009.01.010
- Rabkin S.W., Campbell H. Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis // Obes Rev. 2015. Vol. 16, No. 5. P. 406–415. doi: 10.1111/obr.12270
- Abed H.S., Wittert G.A., Leong D.P., et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial // JAMA. 2013. Vol. 310, No. 19. P. 2050–2060. doi: 10.1001/jama.2013.280521
- Pathak R.K., Middeldorp M.E., Lau D.H., et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARREST-AF cohort study // J Am Coll Cardiol. 2014. Vol. 64, No. 21. P. 2222–2231. doi: 10.1016/j.jacc.2014.09.028
- Pathak R.K., Middeldorp M.E., Meredith M., et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY) // J Am Coll Cardiol. 2015. Vol. 65, No. 20. P. 2159–2169. doi: 10.1016/j.jacc.2015.03.002
- Middeldorp M.E., Pathak R.K., Meredith M., et al. PREVEntion and regReSsive Effect of weight-loss and risk factor modification on Atrial Fibrillation: the REVERSE-AF study // Europace. 2018. Vol. 20, No. 12. P. 1929–1935. doi: 10.1093/europace/euy117
- Omran J., Firwana B., Koerber S., et al. Effect of obesity and weight loss on ventricular repolarization: a systematic review and meta-analysis // Obes Rev. 2016. Vol. 17, No. 6. P. 520–530. doi: 10.1111/obr.12390
- Tse G., Yan B.P. Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death // Europace. 2017. Vol. 19, No. 5. P. 712–721. doi: 10.1093/europace/euw280
- Otsuka N., Okumura Y., Arai M., et al. Effect of obesity and epicardial fat/fatty infiltration on electrical and structural remodeling associated with atrial fibrillation in a novel canine model of obesity and atrial fibrillation: a comparative study // J Cardiovasc Electrophysiol. 2021. Vol. 32, No. 4. P. 889–899. doi: 10.1111/jce.14955
- Lu Y.-Y., Huang S.-Y., Lin Y.-K., et al. Epicardial adipose tissue modulates arrhythmogenesis in right ventricle outflow tract cardiomyocytes // Europace. 2021. Vol. 23, No. 6. P. 970–977. doi: 10.1093/europace/euaa412
- Nakazato R., Rajani R., Cheng V.Y., et al. Weight change modulates epicardial fat burden: a 4-year serial study with non-contrast computed tomography // Atherosclerosis. 2012. Vol. 220, No. 1. P. 139–144. doi: 10.1016/j.atherosclerosis.2011.10.014
- Jonker J.T., de Mol P., de Vries S.T., et al. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function // Radiology. 2013. Vol. 269, No. 2. P. 434–442. doi: 10.1148/radiol.13121631
- Iacobellis G., Singh N., Wharton S., Sharma A.M. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects // Obesity (Silver Spring). 2008. Vol. 16, No. 7. P. 1693–1697. doi: 10.1038/oby.2008.251
- Kim M.-K., Tanaka K., Kim M.-J., et al. Comparison of epicardial, abdominal and regional fat compartments in response to weight loss // Nutr Metab Cardiovasc Dis. 2009. Vol. 19, No. 11. P. 760–766. doi: 10.1016/j.numecd.2009.01.010
- Rabkin S.W., Campbell H. Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis // Obes Rev. 2015. Vol. 16, No. 5. P. 406–415. doi: 10.1111/obr.12270
- Abed H.S., Wittert G.A., Leong D.P., et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial // JAMA. 2013. Vol. 310, No. 19. P. 2050–2060. doi: 10.1001/jama.2013.280521
- Pathak R.K., Middeldorp M.E., Lau D.H., et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARREST-AF cohort study // J Am Coll Cardiol. 2014. Vol. 64, No. 21. P. 2222–2231. doi: 10.1016/j.jacc.2014.09.028
- Pathak R.K., Middeldorp M.E., Meredith M., et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY) // J Am Coll Cardiol. 2015. Vol. 65, No. 20. P. 2159–2169. doi: 10.1016/j.jacc.2015.03.002
- Middeldorp M.E., Pathak R.K., Meredith M., et al. PREVEntion and regReSsive Effect of weight-loss and risk factor modification on Atrial Fibrillation: the REVERSE-AF study // Europace. 2018. Vol. 20, No. 12. P. 1929–1935. doi: 10.1093/europace/euy117
- Omran J., Firwana B., Koerber S., et al. Effect of obesity and weight loss on ventricular repolarization: a systematic review and meta-analysis // Obes Rev. 2016. Vol. 17, No. 6. P. 520–530. doi: 10.1111/obr.12390
- Tse G., Yan B.P. Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death // Europace. 2017. Vol. 19, No. 5. P. 712–721. doi: 10.1093/europace/euw280
Дополнительные файлы
