2022 Esc Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: What is New?

Cover Page

Cite item

Abstract

The review presents new indications to help with diagnosis and treatment of ventricular arrhythmia (VA) in patients with various etiologies of rhythm disturbances, including patients with coronary artery disease, cardiomyopathies, channelopathies, inflammatory heart disease, neuromuscular disease, and congenital heart defects. Algorithms for diagnostic evaluation at first presentation with VAs in patients without known cardiac disease are given.

About the authors

Tatiana N. Novikova

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: novikova-tn@mail.ru
ORCID iD: 0000-0003-4655-0297
SPIN-code: 3401-0329

Associate professor department of cardiology, the associate professor of departament therapy and cardiology of M.S. Kushakovsky

Russian Federation, Saint Petersburg

Vladimir I. Novikov

North-Western State Medical University named after I.I. Mechnikov

Email: novikov-vi@mail.ru
ORCID iD: 0000-0002-2493-6300
SPIN-code: 6909-3377

MD, Doctor of medical sciences, Professor, Head of the Department of Functional Diagnostics

Russian Federation, St. Petersburg

Sergey A. Sayganov

North-Western State Medical University named after I.I. Mechnikov

Email: sergey.sayganov@szgmu.ru
ORCID iD: 0000-0001-8325-1937
SPIN-code: 2174-6400

Doctor of Medical Sciences, Professor

Russian Federation, Saint Petersburg

Vladislava A. Shcherbakova

North-Western State Medical University named after I.I. Mechnikov

Email: shcher.vl@yandex.ru

student

Russian Federation, Saint Petersburg

References

  1. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022;43(40): 3997–4126. doi: 10.1093/eurheartj/ehac262
  2. Faber TS, Gradinger R, Treusch S, et al. Incidence of ventricular tachyarrhythmias during permanent pacemaker therapy in low-risk patients results from the German multicentre EVENTS study. Eur Heart J. 2007;28(18):2238–2242. doi: 10.1093/eurheartj/ehm242
  3. Brignole M, Moya A, de Lange FJ, et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur Heart J. 2018;39(21):1883–1948. doi: 10.1093/eurheartj/ehy037
  4. Middlekauff HR, Stevenson WG, Stevenson LW, Saxon LA. Syncope in advanced heart failure: high risk of sudden death regardless of origin of syncope. J Am Coll Cardio. 1993;21(1): 110–116. doi: 10.1016/0735-1097(93)90724-f
  5. Noda T, Shimizu W, Taguchi A, et al. Malignant entity of idiopathic ventricular fibrillation and polymorphic ventricular tachycardia initiated by premature extrasystoles originating from the right ventricular outflow tract. J Am Coll Cardiol. 2005;46(7):1288–1294. doi: 10.1016/j.jacc.2005.05.077
  6. Belhassen B, Viskin S. Idiopathic ventricular tachycardia and fibrillation. J Cardiovasc Electrophysiol. 1993;4(3):356–368. doi: 10.1111/j.1540-8167.1993.tb01236.x
  7. Zareba W, Platonov P. ECG patterns related to arrhythmias and sudden death: channelopathies, early repolarization, and pre-excitation. Camm JA, editor. The ESC Textbook of Cardiovascular Medicine. 3 edn, The European Society of Cardiology Series. Oxford: Oxford University Press, 2018. P. 382–389. doi: 10.1093/med/9780198784906.003.0074
  8. Binder T. Transthoracic echocardiography and the standard examination of specific cardiac structures. Camm JA, editor. The ESC Textbook of Cardiovascular Medicine. 3 edn, The European Society of Cardiology Series. Oxford: Oxford University Press, 2018. P. 426–431. doi: 10.1093/med/9780198784906.003.0085
  9. Voigt J-U. Left ventricular function, heart failure, and resynchronization therapy. Camm JA, editor. The ESC Textbook of Cardiovascular Medicine. 3 edn, The European Society of Cardiology Series. Oxford: Oxford University Press, 2018. P. 451–454. doi: 10.1093/med/9780198784906.003.0092
  10. Edvardsen T. Cardiomyopathies, myocarditis, and the transplanted heart. Camm JA, editor. The ESC Textbook of Cardiovascular Medicine. 3 edn, The European Society of Cardiology Series. Oxford: Oxford University Press, 2018. P. 456–460. doi: 10.1093/med/9780198784906.003.0094_update_001
  11. Cygankiewicz I. Ambulatory ECG monitoring. Camm JA, editor. The ESC Textbook of Cardiovascular Medicine. 3 edn, The European Society of Cardiology Series. Oxford: Oxford University Press, 2018. P. 393–400. doi: 10.1093/med/9780198784906.003.0798
  12. Gray B, Kirby A, Kabunga P, et al. Twelve-lead ambulatory electrocardiographic monitoring in Brugada syndrome: potential diagnostic and prognostic implications. Heart Rhythm. 2017;14(6):866–874. doi: 10.1016/j.hrthm.2017.02.026
  13. Karogiannis N, Senior R. Stress echocardiography. Camm JA, editor. The ESC Textbook of Cardiovascular Medicine. 3 edn, The European Society of Cardiology Series. Oxford: Oxford University Press, 2018. P. 432–434. doi: 10.1093/med/9780198784906.003.0086_update_001
  14. Di Marco A, Anguera I, Schmitt M, et al. Late gadolinium enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopathy: systematic review and meta-analysis. JACC Heart Fail. 2017;5(1):28–38. doi: 10.1016/j.jchf.2016.09.017
  15. Josephson ME, Callans DJ. Using the twelve-lead electrocardiogram to localize the site of origin of ventricular tachycardia. Heart Rhythm. 2005;2(4):443–446. doi: 10.1016/j.hrthm.2004.12.014
  16. Nucifora G, Muser D, Masci PG, et al. Prevalence and prognostic value of concealed structural abnormalities in patients with apparently idiopathic ventricular arrhythmias of left versus right ventricular origin: a magnetic resonance imaging study. Circ Arrhythm Electrophysiol. 2014;7(3):456–462. doi: 10.1161/CIRCEP.113.001172
  17. Corrado D, Basso C, Leoni L, et al. Three-dimensional electroanatomic voltage mapping increases accuracy of diagnosing arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2005;111(23):3042–3050. doi: 10.1161/CIRCULATIONAHA.104.486977
  18. Casella M, Dello Russo A, Bergonti M, et al. Diagnostic yield of electroanatomic voltage mapping in guiding endomyocardial biopsies. Circulation. 2020;142(13):1249–1260. doi: 10.1161/CIRCULATIONAHA.120.046900
  19. Haanschoten DM, Adiyaman A, ‘t Hart NA, et al. Value of 3D mapping-guided endomyocardial biopsy in cardiac sarcoidosis: case series and narrative review on the value of electro-anatomic mapping-guided endomyocardial biopsies. Eur J Clin Invest. 2021;51(4):e13497. doi: 10.1111/eci.13497
  20. Tung R, Bauer B, Schelbert H, et al. Incidence of abnormal positron emission tomography in patients with unexplained cardiomyopathy and ventricular arrhythmias: the potential role of occult inflammation in arrhythmogenesis. Heart Rhythm. 2015;12(12):2488–2498. doi: 10.1016/j.hrthm.2015.08.014
  21. Palmisano A, Vignale D, Peretto G, et al. Hybrid FDG-PET/MR or FDG-PET/CT to detect disease activity in patients with persisting arrhythmias after myocarditis. JACC Cardiovasc Imaging. 2021;14(1):288–292. doi: 10.1016/j.jcmg.2020.03.009
  22. Dumas F, Geri G, Manzo-Silberman S, et al. Immediate percutaneous coronary intervention is associated with improved short- and long-term survival after out-of-hospital cardiac arrest. Circ Cardiovasc Interv. 2010;3(3):200–207. doi: 10.1161/CIRCINTERVENTIONS.109.913665
  23. Vyas A, Chan PS, Cram P, et al. Early coronary angiography and survival after out-of-hospital cardiac arrest. Circ Cardiovasc Interv. 2015;8(10):e002321. doi: 10.1161/CIRCINTERVENTIONS.114.002321
  24. Kalarus Z, Svendsen JH, Capodanno D, et al. Cardiac arrhythmias in the emergency settings of acute coronary syndrome and revascularization: an European Heart Rhythm Association (EHRA) consensus document, endorsed by the European Association of Percutaneous Cardiovascular Interventions (EAPCI), and European Acute Cardiovascular Care Association (ACCA). Europace. 2019;21(10):1603–1604. doi: 10.1093/europace/euz163
  25. Noc M, Fajadet J, Lassen JF, et al. Invasive coronary treatment strategies for out-of-hospital cardiac arrest: a consensus statement from the European association for percutaneous cardiovascular interventions (EAPCI)/stent for life (SFL) groups. EuroIntervention. 2014;10(1):31–37. doi: 10.4244/EIJV10I1A7
  26. Verma BR, Sharma V, Shekhar S, et al. Coronary angiography in patients with out-of-hospital cardiac arrest without ST-segment elevation: a systematic review and meta-analysis. JACC Cardiovasc Interv. 2020;13(19):2193–2205. doi: 10.1016/j.jcin.2020.07.018
  27. Barbarawi M, Zayed Y, Kheiri B, et al. Optimal timing of coronary intervention in patients resuscitated from cardiac arrest without ST-segment elevation myocardial infarction (NSTEMI): a systematic review and meta-analysis. Resuscitation. 2019;144:137–144. doi: 10.1016/j.resuscitation.2019.06.279
  28. Meng-Chang Y, Meng-Jun W, Xiao-Yan X, et al. Coronary angiography or not after cardiac arrest without ST segment elevation: a systematic review and meta-analysis. Medicine (Baltimore). 2020;99(41):e22197. doi: 10.1097/MD.0000000000022197
  29. Khan MS, Shah SMM, Mubashir A, et al. Early coronary angiography in patients resuscitated from out of hospital cardiac arrest without ST-segment elevation: a systematic review and meta-analysis. Resuscitation. 2017;121:127–134. doi: 10.1016/j.resuscitation.2017.10.019
  30. Welsford M, Bossard M, Shortt C, et al. Does early coronary angiography improve survival after out-of-hospital cardiac arrest? A systematic review with meta-analysis. Can J Cardiol. 2018;34(2):80–194. doi: 10.1016/j.cjca.2017.09.012
  31. Chelly J, Mongardon N, Dumas F, et al. Benefit of an early and systematic imaging procedure after cardiac arrest: insights from the PROCAT (Parisian Region Out of Hospital Cardiac Arrest) registry. Resuscitation. 2012;83(12):1444–1450. doi: 10.1016/j.resuscitation.2012.08.321
  32. Stiles MK, Wilde AAM, Abrams DJ, et al. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. Heart Rhythm. 2021;18(1):e1–e50. doi: 10.1016/j.hrthm.2020.10.010
  33. Tseng ZH, Olgin JE, Vittinghoff E, et al. Prospective countywide surveillance and autopsy characterization of sudden cardiac death: POST SCD study. Circulation. 2018;137(25):2689–2700. doi: 10.1161/CIRCULATIONAHA.117.033427
  34. Fellmann F, van El CG, Charron P, et al. European recommendations integrating genetic testing into multidisciplinary management of sudden cardiac death. Eur J Hum Genet. 2019;27:1763–1773. doi: 10.1038/s41431-019-0445-y
  35. Yamamoto T, Takayama M, Sato N, et al. Inappropriate analyses of automated external defibrillators used during in-hospital ventricular fibrillation. Circ J. 2008;72(4):679–681. doi: 10.1253/circj.72.679
  36. Sweeney MO, Ruetz LL, Belk P, et al. Bradycardia pacing-induced short-long-short sequences at the onset of ventricular tachyarrhythmias: a possible mechanism of proarrhythmia? J Am Coll Cardiol. 2007;50(7):614–622. doi: 10.1016/j.jacc.2007.02.077
  37. Tseng ZH, Hayward RM, Clark NM, et al. Sudden death in patients with cardiac implantable electronic devices. JAMA Intern Med. 2015;175(8):1342–1350. doi: 10.1001/jamainternmed.2015.2641
  38. Lacour P, Buschmann C, Storm C, et al. Cardiac implantable electronic device interrogation at forensic autopsy: an underestimated resource? Circulation. 2018;137(25):2730–2740. doi: 10.1161/CIRCULATIONAHA.117.032367
  39. Curcio A, Mazzanti A, Bloise R, et al. Clinical presentation and outcome of Brugada syndrome diagnosed with the new 2013 criteria. J Cardiovasc Electrophysiol. 2016;27(8):937–943. doi: 10.1111/jce.12997
  40. Haïssaguerre M, Shah DC, Jaïs P, et al. Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet. 2002;359(9307):677–678. doi: 10.1016/S0140-6736(02)07807-8
  41. Krahn AD, Healey JS, Chauhan V, et al. Systematic assessment of patients with unexplained cardiac arrest: cardiac arrest survivors with preserved ejection fraction registry (CASPER). Circulation. 2009;120(4):278–285. doi: 10.1161/CIRCULATIONAHA.109.853143
  42. van der Werf C, Hofman N, Tan HL, et al. Diagnostic yield in sudden unexplained death and aborted cardiac arrest in the young: the experience of a tertiary referral center in The Netherlands. Heart Rhythm. 2010;7(10):1383–1389. doi: 10.1016/j.hrthm.2010.05.036
  43. Waldmann V, Karam N, Bougouin W, et al. Burden of coronary artery disease as a cause of sudden cardiac arrest in the young. J Am Coll Cardiol. 2019;73(16):2118–2120. doi: 10.1016/j.jacc.2019.01.064
  44. Eckart RE, Scoville SL, Campbell CL, et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Intern Med. 2004;141(11):829–834. doi: 10.7326/0003-4819-141-11-200412070-00005
  45. Kunadian V, Chieffo A, Camici PG, et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur Heart J. 2021;16(13):1049–1069. doi: 10.4244/EIJY20M07_01
  46. Rodrigues P, Joshi A, Williams H, et al. Diagnosis and prognosis in sudden cardiac arrest survivors without coronary artery disease: utility of a clinical approach using cardiac magnetic resonance imaging. Circ Cardiovasc Imaging. 2017;10(12):e006709. doi: 10.1161/CIRCIMAGING.117.006709
  47. White JA, Fine NM, Gula L, et al. Utility of cardiovascular magnetic resonance in identifying substrate for malignant ventricular arrhythmias. Circ Cardiovasc Imaging. 2012;5(1):12–20. doi: 10.1161/CIRCIMAGING.111.966085
  48. Basso C, Perazzolo Marra M, Rizzo S, et al. Arrhythmic mitral valve prolapse and sudden cardiac death. Circulation. 2015;132(7):556–566. doi: 10.1161/CIRCULATIONAHA.115.016291
  49. Basso C, Iliceto S, Thiene G, Perazzolo Marra M. Mitral valve prolapse, ventricular arrhythmias, and sudden death. Circulation. 2019;140(11):952–964. doi: 10.1161/CIRCULATIONAHA.118.034075
  50. Govindan M, Batchvarov VN, Raju H, et al. Utility of high and standard right precordial leads during ajmaline testing for the diagnosis of Brugada syndrome. Heart. 2010;96(23):1904–1908. doi: 10.1136/hrt.2010.201244
  51. Obeyesekere MN, Klein GJ, Modi S, et al. How to perform and interpret provocative testing for the diagnosis of Brugada syndrome, long-QT syndrome, and catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol. 2011;4(6):958–964. doi: 10.1161/CIRCEP.111.965947
  52. Cheung CC, Mellor G, Deyell MW, et al. Comparison of ajmaline and procainamide provocation tests in the diagnosis of Brugada syndrome. JACC Clin Electrophysiol. 2019;5(4):504–512. doi: 10.1016/j.jacep.2019.01.026
  53. Antzelevitch C, Yan G-X, Ackerman MJ, et al. J-Wave syndromes expert consensus conference report: emerging concepts and gaps in knowledge. Europace. 2016;32(5):315–339. doi: 10.1016/j.joa.2016.07.002
  54. Garratt CJ, Antoniou A, Griffith MJ, et al. Use of intravenous adenosine in sinus rhythm as a diagnostic test for latent preexcitation. Am J Cardiol. 1990;65(13):868–873. doi: 10.1016/0002-9149(90)91428-9
  55. Foo FS, Stiles MK, Heaven D. Unmasking latent preexcitation of a right-sided accessory pathway with intravenous adenosine after unexplained sudden cardiac arrest. J Arrhythm. 2020;36(5):939–941. doi: 10.1002/joa3.12408
  56. Krahn AD, Healey JS, Chauhan VS, et al. Epinephrine infusion in the evaluation of unexplained cardiac arrest and familial sudden death: from the cardiac arrest survivors with preserved Ejection Fraction Registry. Circ Arrhythm Electrophysiol. 2012;5(5):933–940. doi: 10.1161/CIRCEP.112.973230
  57. Denis A, Sacher F, Derval N, et al. Diagnostic value of isoproterenol testing in arrhythmogenic right ventricular cardiomyopathy. Circ Arrhythm Electrophysiol. 2014;7(4):590–597. doi: 10.1161/CIRCEP.113.001224
  58. Marjamaa A, Hiippala A, Arrhenius B, et al. Intravenous epinephrine infusion test in diagnosis of catecholaminergic polymorphic ventricular tachycardia. J Cardiovasc Electrophysiol. 2012;23(2):194–199. doi: 10.1111/j.1540-8167.2011.02188.x
  59. Ackerman MJ, Khositseth A, Tester DJ, et al. Epinephrine-induced QT interval prolongation: a gene-specific paradoxical response in congenital long QT syndrome. Mayo Clin Proc. 2002;77(5):413–421. doi: 10.4065/77.5.413
  60. Shimizu W, Noda T, Takaki H, et al. Diagnostic value of epinephrine test for genotyping LQT1, LQT2, and LQT3 forms of congenital long QT syndrome. Heart Rhythm. 2004;1(3):276–283. doi: 10.1016/j.hrthm.2004.04.021
  61. Magnano AR, Talathoti N, Hallur R, et al. Sympathomimetic infusion and cardiac repolarization: the normative effects of epinephrine and isoproterenol in healthy subjects. J Cardiovasc Electrophysiol. 2006;17(9):983–989. doi: 10.1111/j.1540-8167.2006.00555.x
  62. Vyas H, Hejlik J, Ackerman MJ. Epinephrine QT stress testing in the evaluation of congenital long-QT syndrome: diagnostic accuracy of the paradoxical QT response. Circulation. 2006;113(11):1385–1392. doi: 10.1161/CIRCULATIONAHA.105.600445
  63. Krahn AD, Healey JS, Chauhan V, et al. Systematic assessment of patients with unexplained cardiac arrest: cardiac arrest survivors with preserved ejection fraction registry (CASPER). Circulation. 2009;120(4):278–285. doi: 10.1161/CIRCULATIONAHA.109.853143
  64. Waldmann V, Bougouin W, Karam N, et al. Coronary vasospasm-related sudden cardiac arrest in the community. J Am Coll Cardiol. 2018;72(7):814–815. doi: 10.1016/j.jacc.2018.05.051
  65. Etienne P, Huchet F, Gaborit N, et al. Mental stress test: a rapid, simple, and efficient test to unmask long QT syndrome. Europace. 2018;20(12):2014–2020. doi: 10.1093/europace/euy078
  66. Kop WJ, Krantz DS, Nearing BD, et al. Effects of acute mental stress and exercise on T-wave alternans in patients with implantable cardioverter defibrillators and controls. Circulation. 2004;109(15):1864–1869. doi: 10.1161/01.CIR.0000124726.72615.60
  67. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Eur Heart J. 2010;31(7):806–814. doi: 10.1093/eurheartj/ehq025
  68. Giudicessi JR, Ackerman MJ. Exercise testing oversights underlie missed and delayed diagnosis of catecholaminergic polymorphic ventricular tachycardia in young sudden cardiac arrest survivors. Heart Rhythm. 2019;16(8):1232–1239. doi: 10.1016/j.hrthm.2019.02.012
  69. Sy RW, van der Werf C, Chattha IS, et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011;124(20):2187–2194. doi: 10.1161/CIRCULATIONAHA.111.028258
  70. Adler A, van der Werf C, Postema PG, et al. The phenomenon of ‘QT stunning’: the abnormal QT prolongation provoked by standing persists even as the heart rate returns to normal in patients with long QT syndrome. Heart Rhythm. 2012;9(6):901–908. doi: 10.1016/j.hrthm.2012.01.026
  71. Schwartz PJ, Lia C. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation. 2011;124(20): 2181–2184. doi: 10.1161/CIRCULATIONAHA.111.062182
  72. Wang Y, Scheinman MM, Chien WW, et al. Patients with supraventricular tachycardia presenting with aborted sudden death: incidence, mechanism and long-term follow-up. J Am Coll Cardiol. 1991;18(7):1711–1719. doi: 10.1016/0735-1097(91)90508-7
  73. Roberts JD, Gollob MH, Young C, et al. Bundle branch re-entrant ventricular tachycardia: novel genetic mechanisms in a lifethreatening arrhythmia. JACC Clin Electrophysiol. 2017;3(3): 276–288. doi: 10.1016/j.jacep.2016.09.019
  74. Santangeli P, Hamilton-Craig C, Dello Russo A, et al. Imaging of scar in patients with ventricular arrhythmias of right ventricular origin: cardiac magnetic resonance versus electroanatomic mapping. J Cardiovasc Electrophysiol. 2011;22(12):1359–1366. doi: 10.1111/j.1540-8167.2011.02127.x
  75. Haïssaguerre M, Duchateau J, Dubois R, et al. Idiopathic ventricular fibrillation: role of Purkinje system and microstructural myocardial abnormalities. JACC Clin Electrophysiol. 2020;6(6): 591–608. doi: 10.1016/j.jacep.2020.03.010
  76. Haïssaguerre M, Hocini M, Cheniti G, et al. Localized structural alterations underlying a subset of unexplained sudden cardiac death. Circ Arrhythm Electrophysiol. 2018;11(7):e006120. doi: 10.1161/CIRCEP.117.006120
  77. Mellor G, Laksman ZWM, Tadros R, et al. Genetic testing in the evaluation of unexplained cardiac arrest: from the CASPER (Cardiac Arrest Survivors With Preserved Ejection Fraction Registry). Circ Cardiovasc Genet. 2017;10(3):e001686. doi: 10.1161/CIRCGENETICS.116.001686
  78. Burns C, Bagnall RD, Lam L, et al. Multiple gene variants in hypertrophic cardiomyopathy in the era of next-generation sequencing. Circ-Genom Precis Med. 2017;10(4):e001666. doi: 10.1161/CIRCGENETICS.116.001666
  79. Winkel BG, Holst AG, Theilade J, et al. Nationwide study of sudden cardiac death in persons aged 1–35 years. Eur Heart J. 2011;32(8):983–990. doi: 10.1093/eurheartj/ehq428
  80. Bagnall RD, Weintraub RG, Ingles J, et al. A prospective study of sudden cardiac death among children and young adults. N Engl J Med. 2016;374:2441–2452. doi: 10.1056/NEJMoa1510687
  81. Winkel BG, Risgaard B, Sadjadieh G, et al. Sudden cardiac death in children (1–18 years): symptoms and causes of death in a nationwide setting. Eur Heart J. 2014;35(13):868–875. doi: 10.1093/eurheartj/eht509
  82. Risgaard B, Winkel BG, Jabbari R, et al. Burden of sudden cardiac death in persons aged 1 to 49 years: nationwide study in Denmark. Circ Arrhythm Electrophysiol. 2014;7(2):205–211. doi: 10.1161/CIRCEP.113.001421
  83. Hansen BL, Jacobsen EM, Kjerrumgaard A, et al. Diagnostic yield in victims of sudden cardiac death and their relatives. Europace. 2020;22(6):964–971. doi: 10.1093/europace/euaa056
  84. Lahrouchi N, Raju H, Lodder EM, et al. Utility of post-mortem genetic testing in cases of sudden arrhythmic death syndrome. J Am Coll Cardiol. 2017;69(17):2134–2145. doi: 10.1016/j.jacc.2017.02.046
  85. Tan HL, Hofman N, van Langen IM, et al. Sudden unexplained death: heritability and diagnostic yield of cardiological and genetic examination in surviving relatives. Circulation. 2005;112(2):207–213. doi: 10.1161/CIRCULATIONAHA.104.522581
  86. Lahrouchi N, Raju H, Lodder EM, et al. The yield of postmortem genetic testing in sudden death cases with structural findings at autopsy. Eur J Hum Genet. 2020;28:17–22. doi: 10.1038/s41431-019-0500-8
  87. Miles CJ, Behr ER. The role of genetic testing in unexplained sudden death. Transl Res. 2016;168:59–73. doi: 10.1016/j.trsl.2015.06.007
  88. Behr E, Wood DA, Wright M, et al. Cardiological assessment of first-degree relatives in sudden arrhythmic death syndrome. Lancet. 2003;362(9394):1457–1459. doi: 10.1016/s0140-6736(03)14692-2
  89. Behr ER, Dalageorgou C, Christiansen M, et al. Sudden arrhythmic death syndrome: familial evaluation identifies inheritable heart disease in the majority of families. Eur Heart J. 2008;29(13): 1670–1680. doi: 10.1093/eurheartj/ehn219
  90. Kumar S, Peters S, Thompson T, et al. Familial cardiological and targeted genetic evaluation: low yield in sudden unexplained death and high yield in unexplained cardiac arrest syndromes. Heart Rhythm. 2013;10(11):1653–1660. doi: 10.1016/j.hrthm.2013.08.022
  91. McGorrian C, Constant O, Harper N, et al. Family-based cardiac screening in relatives of victims of sudden arrhythmic death syndrome. Europace. 2013;15(7):1050–1058. doi: 10.1093/europace/eus408
  92. Mellor G, Raju H, de Noronha SV, et al. Clinical characteristics and circumstances of death in the sudden arrhythmic death syndrome. Circ Arrhythm Electrophysiol. 2014;7(6):1078–1083. doi: 10.1161/CIRCEP.114.001854
  93. Papadakis M, Papatheodorou E, Mellor G, et al. The diagnostic yield of Brugada syndrome after sudden death with normal autopsy. J Am Coll Cardiol. 2018;71(11):1204–1214. doi: 10.1016/j.jacc.2018.01.031
  94. Mellor G, Nelson CP, Robb C, et al. The prevalence and significance of the early repolarization pattern in sudden arrhythmic death syndrome families. Circ Arrhythm Electrophysiol. 2016;9(6):e003960. doi: 10.1161/CIRCEP.116.003960
  95. Priori SG, Wilde AA, Horie M, et al. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Europace. 2013;15(10):1389–1406. doi: 10.1093/europace/eut272
  96. van der Werf C, Stiekema L, Tan HL, et al. Low rate of cardiac events in first-degree relatives of diagnosis-negative young sudden unexplained death syndrome victims during follow-up. Heart Rhythm. 2014;11(10):1728–1732. doi: 10.1016/j.hrthm.2014.05.028
  97. Wong LCH, Roses-Noguer F, Till JA, Behr ER. Cardiac evaluation of pediatric relatives in sudden arrhythmic death syndrome: a 2-center experience. Circ Arrhythm Electrophysiol. 2014;7(5): 800–806. doi: 10.1161/CIRCEP.114.001818

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Algorithm for the evaluation of patients presenting with an incidental finding of non-sustained ventricular tachycardia (adapted from the 2022 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death) [1].

Download (689KB)
3. Fig. 2. Ventricular tachycardia of the right ventricle outflow tract (left bundle branch block-like QRS morphology, inferior axis, V4 transition) [1].

Download (450KB)
4. Fig. 3. Fascicular ventricular tachycardia (right bundle branch block-like QRS morphology, superior axis, QRS 130 ms) [1].

Download (399KB)
5. Fig. 4. Algorithm for the evaluation of patients presenting with a first sustained monomorphic ventricular tachycardia episode (adapted from the 2022 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death) [1].

Download (846KB)
6. Fig. 5. Bundle branch re-entrant ventricular tachycardia. Left, ECG during sinus rhythm; right, ECG during tachycardia [1].

Download (395KB)
7. Fig. 6. Algorithm for the evaluation of sudden cardiac arrest survivors (adapted from the 2022 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death) [1].

Download (789KB)
8. Fig 7. Algorithm for the evaluation of sudden death victims (adapted from the 2022 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death) [1].

Download (731KB)
9. Fig. 8. Algorithm for the evaluation of relatives of unexplained sudden death decedents (adapted from the 2022 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death) [1].

Download (892KB)

Copyright (c) 2022 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».