多发性硬化症患者在接受大剂量免疫抑制治疗和自体造血干细胞移植前后的静息态功能性核磁共振成像研究
- 作者: Potemkina E.A.1, Trufanov A.G.2,3, Efimtsev A.Y.1, Polushin A.Y.3, Volgina V.V.1, Filin Y.A.1
-
隶属关系:
- Almazov Research Center of the Ministry of Health of the Russian Federation
- Military Medical Academy
- Pavlov First Saint Petersburg State Medical University
- 期: 卷 43, 编号 3 (2024)
- 页面: 291-299
- 栏目: Original articles
- URL: https://journals.rcsi.science/RMMArep/article/view/275797
- DOI: https://doi.org/10.17816/rmmar632532
- ID: 275797
如何引用文章
详细
现实意义。多发性硬化症是一种慢性自身免疫性疾病,以中枢神经系统多灶性脱髓鞘性为特点,通常影响工作年龄的人群。该疾病会导致血脑屏障受损、多灶性炎症、轴突髓鞘破坏和不同程度的损害。临床表现为运动活动受限、视力减退,以及导致患者表现丧失和残疾的其他症状。
研究目的。使用静息态功能性核磁共振成像测定多发性硬化症患者在接受大剂量免疫抑制治疗和自体造血干细胞移植前后大脑神经网络功能连接的变化。
材料和方法。对多发性硬化症患者在接受大剂量免疫抑制治疗和自体造血干细胞移植前后的静息态功能性核磁共振成像数据进行了动态分析。25名经验证诊断为多发性硬化症的患者参与了研究。每名患者在两个时间点(大剂量免疫抑制治疗和自体造血干细胞移植前后)接受了综合性的核磁共振成像检查,间隔时间为12个月。检查包括用来排除大脑中是否存在病灶(除了多发性硬化症病变)的结构核磁共振成像磁和,用来评估功能连接性的静息态功能性核磁共振成像。同时根据经典神经病学中普遍接受的方法进行临床神经学检查。
结果。在通过静息态功能磁共振成像获得的两组数据的对比阶段,在不同的脑区检测到了功能活动的变化,这可能是造成研究组临床差异的原因。
结论。目前正在研究导致多发性硬化症认知障碍的大脑结构和形态变化之间的关系。为了预测疾病进展,需要开发生物标志物,包括基于功能性磁共振成像的生物标志物。许多研究人员认为,根据功能性磁共振成像测量大脑神经网络功能连接性的变化,可以反映疾病的进程、治疗效果和神经康复情况。对这些变化的评估可能有助于制定个性化的治疗和康复的方法。
作者简介
Elena A. Potemkina
Almazov Research Center of the Ministry of Health of the Russian Federation
Email: lenagorbunova-124@yandex.ru
ORCID iD: 0000-0003-3987-9916
Scopus 作者 ID: 57217020760
Researcher ID: ABF-8381-2021
俄罗斯联邦, Saint Petersburg
Artem G. Trufanov
Military Medical Academy; Pavlov First Saint Petersburg State Medical University
Email: trufanovart@gmail.com
ORCID iD: 0000-0003-2905-9287
MD, Dr. Sci. (Medicine), Professor at the Department
俄罗斯联邦, Saint Petersburg; Saint PetersburgAlexander Yu. Efimtsev
Almazov Research Center of the Ministry of Health of the Russian Federation
Email: atralf@mail.ru
ORCID iD: 0000-0003-2249-1405
SPIN 代码: 3459-2168
Scopus 作者 ID: 56807130100
Researcher ID: L-1124-2015
MD, Dr. Sci. (Medicine), Associate Professor at the Department
俄罗斯联邦, Saint PetersburgAleksey Yu. Polushin
Pavlov First Saint Petersburg State Medical University
Email: alexpolushin@yandex.ru
ORCID iD: 0000-0001-8699-2482
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint PetersburgVictoria V. Volgina
Almazov Research Center of the Ministry of Health of the Russian Federation
Email: volginaviktoria1@gmail.com
ORCID iD: 0009-0003-1517-8709
俄罗斯联邦, Saint Petersburg
Yana A. Filin
Almazov Research Center of the Ministry of Health of the Russian Federation
编辑信件的主要联系方式.
Email: filin_yana@mail.ru
ORCID iD: 0009-0009-0778-6396
俄罗斯联邦, Saint Petersburg
参考
- Prosperini L, Piattella MC, Giannì C, Pantano P. Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis. Neural Plast. 2015;2015:481574. doi: 10.1155/2015/481574
- Clinical guidelines — Multiple sclerosis — 2022–2023–2024 (13.07.2022) — Approved by the Ministry of Health of the Russian Federation. As of July 13, 2022 on the website of the Ministry of Health of the Russian Federation. Available from: http://disuria.ru/_ld/12/1226_kr22G35p0MZ.pdf (In Russ.)
- Hejazi S, Karwowski W, Farahani FV, et al. Graph-Based Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review. Brain Sci. 2023;13(2):246. doi: 10.3390/brainsci13020246
- Giorgio A, De Stefano N. Advanced Structural and Functional Brain MRI in Multiple Sclerosis. Semin Neurol. 2016;36(2):163–176. doi: 10.1055/s-0036-1579737
- Rocca MA, Schoonheim MM, Valsasina P, et al. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin. 2022;35:103076. doi: 10.1016/j.nicl.2022.103076
- Manca R, Sharrack B, Paling D, et al. Brain connectivity and cognitive processing speed in multiple sclerosis: A systematic review. J Neurol Sci. 2018;388:115–127. doi: 10.1016/j.jns.2018.03.003
- Rocca MA, De Meo E, Filippi M. Functional MRI in investigating cognitive impairment in multiple sclerosis. Acta Neurol Scand. 2016;134 Suppl 200:39–46. doi: 10.1111/ane.12654
- Demir S. Multiple Sclerosis Functional Composite. Noro Psikiyatr Ars. 2018;55(Suppl 1):S66–S68. doi: 10.29399/npa.23349
- Nelson F, Akhtar MA, Zúñiga E, et al. Novel fMRI working memory paradigm accurately detects cognitive impairment in multiple sclerosis. Mult Scler. 2017;23(6):836–847. doi: 10.1177/1352458516666186
- Jandric D, Doshi A, Scott R, et al. A Systematic Review of Resting-State Functional MRI Connectivity Changes and Cognitive Impairment in Multiple Sclerosis. Brain Connect. 2022;12(2):112–133. doi: 10.1089/brain.2021.0104
- Smallwood J, Bernhardt BC, Leech R, et al. The default mode network in cognition: a topographical perspective. Nat Rev Neurosci. 2021;22(8):503–513. doi: 10.1038/s41583-021-00474-4
- Tavazzi E, Cazzoli M, Pirastru A, et al. Neuroplasticity and Motor Rehabilitation in Multiple Sclerosis: A Systematic Review on MRI Markers of Functional and Structural Changes. Front Neurosci. 2021;15:707675. doi: 10.3389/fnins.2021.707675
- Tavazzi E, Bergsland N, Cattaneo D, et al. Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a structural and functional MRI study. J Neurol. 2018;265(6):1393–1401. doi: 10.1007/s00415-018-8859-y
- Tolf A, Fagius J, Carlson K, et al. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurol Scand. 2019;140(5):320–327. doi: 10.1111/ane.13147
- Msheik A, Assi F, Hamed F, et al. Stem Cell Transplantation for Multiple Sclerosis: A 2023 Review of Published Studies. Cureus. 2023;15(10):e47972. doi: 10.7759/cureus.47972
- Nicholas RS, Rhone EE, Mariottini A, et al. Autologous Hematopoietic Stem Cell Transplantation in Active Multiple Sclerosis: A Real-world Case Series. Neurology. 2021;97(9):e890–e901. doi: 10.1212/WNL.0000000000012449
- Bonavita S, Sacco R, Esposito S, et al. Default mode network changes in multiple sclerosis: a link between depression and cognitive impairment? Eur J Neurol. 2016;24(1):27–36. doi: 10.1111/ene.13112
