Exo-rehabilitation of patients with spastic hemiparesis: high technology

Cover Page

Cite item

Full Text

Abstract

AIM: Walking disorders are a frequent consequence of stroke. New technologies, such as the use of robotic exoskeletons, can help with recovery, but their effectiveness has not yet been sufficiently proven.

MATERIALS AND METHODS: Forty-two patients with spasticity and walking disorders (stroke duration from 1.5 to 4 years) were included in the study. The Tardieu Scale, Modified Ashworth scale, Medical Research Council Scale, 10 Meter Walk Test, Rivermead Mobility Index, Berg Balance Test, Rankin scale, and a Visual Analog Scale (to assess patient satisfaction with treatment) were used in assessments. The patients were randomized into 2 groups (n = 22 & 20): the first group received exoskeleton walk training with the powered exoskeleton, ExoAtlet, and the second group received physical therapy sessions, each for 1 hour daily over 10 days. Clinical evaluations of patients were performed at 3 timepoints: baseline (Day 1), and 12.

RESULTS: Comparison of both groups at the second timepoint showed significantly better results (p < 0.05) in the first group vs the second group. Walking speed increased due to balance training, correction of postural disorders, spastic muscle stretching, and stretch reflex suppression.

CONCLUSION: The wearable powered ExoAtlet exoskeleton is a promising technology for improving walking (2 tables, bibliography: 13 refs).

About the authors

Aleksandr S. Rodionov

S.M. Kirov Military Medical Academy of the Russian Defense Ministry

Author for correspondence.
Email: rodionovcsm@gmail.com
ORCID iD: 0000-0002-7455-8600
SPIN-code: 4458-9650

cadet

Russian Federation, 6, Akademika Lebedeva str., Saint Peterburg, 194044

Aleksandr P. Kovalenko

S.M. Kirov Military Medical Academy of the Russian Defense Ministry

Email: kvlnko73@gmail.com
ORCID iD: 0000-0001-5762-5632
SPIN-code: 5324-0355

MD, PhD (Medicine)

Russian Federation, 6, Akademika Lebedeva str., Saint Peterburg, 194044

Dmitriy I. Kremlуоv

S.M. Kirov Military Medical Academy of the Russian Defense Ministry

Email: kremlevdm27@gmail.com
ORCID iD: 0000-0001-7919-3383
SPIN-code: 4569-1035

student

Russian Federation, 6, Akademika Lebedeva str., Saint Peterburg, 194044

Dmitriy V. Averkiуev

S.M. Kirov Military Medical Academy of the Russian Defense Ministry

Email: averdm@mail.ru
ORCID iD: 0000-0002-4377-0115
SPIN-code: 8042-1569

MD, PhD (Medicine)

Russian Federation, 6, Akademika Lebedeva str., Saint Peterburg, 194044

References

  1. Bushkov FA, Kleshchunov SS, Kosiaeva SV, et al. Clinical trial applications of the locomotion exoskeleton “exoatlet” in spinal patients. Bulletin of Rehabilitation Medicine. 2017;2(78):54–59. (In Russ.)
  2. Tkachenko PV, Daminov VD, Karpov OE. Application of exoskeleton exoatlet in complex rehabilitation of the spinal cord injury patients. Bulletin of Rehabilitation Medicine. 2017;2(78):126–132. (In Russ.)
  3. Klochkov AS. Robotic systems in the restoration of walking skills in patients who have suffered a stroke [dissertation]. Moscow; 2012. (In Russ.)
  4. Kotov SV, Lijdvoy VY, Sekirin AB, et al. The efficacy of the exoskeleton exoatlet to restore walking in patients with multiple sclerosis. Neuroscience and Behavioral Physiology. 2017;117(10–2):41–47. (In Russ.)
  5. Makarova MR, Liadov KV, Turova EA, Kochetkov AV. Possibilities of modern mechanical therapy in the correction of motor disorders of neurological patients. Bulletin of Rehabilitation Medicine. 2014;1(59):54–62. (In Russ.)
  6. Cruciger O, Schildhauer TA, Meindl RC, et al. Impact of locomotion training with a neurologic controlled hybrid assistive limb (HAL) exoskeleton on neuropathic pain and health related quality of life (HRQoL) in chronic SCI: a case study. Disabil Rehabil Assist Technol. 2016;11(6):529–534. doi: 10.3109/17483107.2014.981875
  7. Hartigan C, Kandilakis C, Dalley S, et al. Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton. Spring. 2015;21(2):93–99. doi: 10.1310/sci2102-93
  8. Kasai R, Takeda S. The effect of a hybrid assistive limb on sit-to-stand and standing patterns of stroke patients. J Phys Ther Sci. 2016;28(6):1786–1790. doi: 10.1589/jpts.2016.1786
  9. Mehrholz J, Thomas S, Werner C, et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2017;5(5):CD006185. doi: 10.1002/14651858.CD006185.pub4
  10. Kovalenko AP, Kamaeva OV, Misikov VK, et al. Scales and tests in the rehabilitation and treatment of patients with spasticity of the lower limbs. Neuroscience and Behavioral Physiology. 2018;118(5):120–128. (In Russ.) doi: 10.17116/jneuro201811851120
  11. Kovalenko AP, Misikov VK, Iskra DA. Tardue scales in the diagnostic of spasticity. Neuroscience and Behavioral Physiology. 2019;119(9):70–77. (In Russ.) doi: 10.17116/jnevro201911909183
  12. Iskra DA, Kovalenko AP, Koshkarev MA, Dyskin DE. Spasticity: from pathophysiology to treatment. Neuroscience and Behavioral Physiology. 2018;118(10):108–114. (In Russ.) doi: 10.17116/jnevro2018118101108
  13. Kovalenko AP, Misikov VK. Botulinum toxin in treatment of lower limb spasticity in patients with brain damage. Neuroscience and Behavioral Physiology. 2018;118(9):113–119. (In Russ.) doi: 10.17116/jnevro201811809128

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Rodionov A.S., Kovalenko A.P., Kremlуоv D.I., Averkiуev D.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).