Modern approaches to pertussis vaccination

Cover Page

Cite item

Full Text

Abstract

Pertussis is an acute respiratory disease caused by Gram-negative bacteria Bordetella pertussis. Pertussis is highly contagious for all age groups; however, it primarily affects children under the age of one year. Despite decades of high vaccine coverage, pertussis has currently resurged, with a rising prevalence in adolescents and adults. This study aimed to assess possible causes of increased incidence of pertussis and the efficacy of existing strategies for preventing its resurgence and spreading. Furthermore, the work examined promising areas of pertussis immunoprophylaxis in the current setting. The study identified the main causes of increased incidence of pertussis and changes in the incidence pattern. These include insufficient efficacy of available immunobiologicals for pertussis prevention, rapid decline in acquired immunity (primarily due to incorrect vaccination schedule), increased prevalence of atypical forms of pertussis, and the emergence of new pathogen strains with higher resistance to existing vaccines. Improving specific pertussis immunoprophylaxis necessitates a broader vaccine coverage to include women in the third trimester of pregnancy, families with children (especially young ones), those who work with children, and healthcare professionals. Reimmunization in older individuals (>65 years old) must be performed every 10 years. Furthermore, innovative pertussis vaccines are required. Molecular biology techniques and a thorough assessment of the disadvantages of existing vaccines are essential for developing new drugs that are effective against modified strains. Moreover, selecting and using vaccine adjuvants that activate both innate and acquired immunity is crucial for developing new vaccines. These strategies will provide more effective control over this vaccine-preventable disease and prevent its resurgence.

About the authors

Aleksander V. Stepanov

State Scientific Research Test Institute of the military medicine

Email: alexander_58@mail.ru
ORCID iD: 0000-0002-1917-2895
SPIN-code: 7279-7055

MD, D.Sc. (Medicine), Associate Professor

Russian Federation, Saint Petersburg

Nikolay V. Komissarov

State Scientific Research Test Institute of the military medicine

Email: nickomm@mail.ru
ORCID iD: 0009-0003-9769-7157
SPIN-code: 8046-3263

MD, Ph.D. (Medicine), Associate Professor

Russian Federation, Saint Petersburg

Aleksey B. Seleznyov

State Scientific Research Test Institute of the military medicine

Email: alexseleznov@list.ru
ORCID iD: 0000-0002-9278-5698
SPIN-code: 7853-3773

MD, Ph.D. (Medicine), Associate Professor

Russian Federation, Saint Petersburg

Anastasiya A. Kudryavtseva

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: anastkudravtseva@list.ru
ORCID iD: 0009-0009-5177-0164
SPIN-code: 1514-7878
ResearcherId: rid77268
Russian Federation, Saint Petersburg

References

  1. Abu-Raya B, Esser MJ, Nakabembe E, et al. Antibody and B-cell Immune Responses Against Bordetella Pertussis Following Infection and Immunization. J Mol Biol. 2023;435(24):168344. doi: 10.1016/j.jmb.2023.168344
  2. Harit SM, Iozefovich OV, Friedman IV, et al. Pertussis vaccination: problems, possible solutions. Journal of Infectology. 2020;12(2):50–57. doi: 10.22625/2072-6732-2020-12-2-50-57 EDN: SRPOWV
  3. Miguelena Chamorro B, De Luca K, Swaminathan G, et al. Bordetella bronchiseptica and Bordetella pertussis: Similarities and Differences in Infection, Immuno-Modulation, and Vaccine Considerations. Clinical microbiology reviews. 2023;36(3):e0016422. doi: 10.1128/cmr.00164-22
  4. Zaitsev EM. Epidemic process and pertussis vaccination. Journal of Microbiology, Epidemiology and Immunobiology. 2013;(3):103–110. EDN: TMKGHF
  5. Yilmaz Colak C, Tefon Ozturk BE. Brdetella pertussis and outer membrane vesicles. Pathogenes and global health. 2023;117(4):342–355. doi: 10.1080/20477724.2022.2117937
  6. Horinguchi Y. Current understanding of Bordetella-induced cough. Microbiology and immunology. 2024;68(4):123–129. doi: 10.1111/1348-0421.13119
  7. Hail JM, Kang J, Kenney SM, et al. Re-investigating the coughing rat model of pertussis to understand Bordetella pertussis to cause in rats. Infection and immunity. 2021;89(12):e00304–e00321. doi: 10.1128/IAI.00304-21
  8. Nguyen VTN, Simon L. Pertussis: The Whooping Cough. Primary Care. 2018;45(3):423–431. doi: 10.1016/j.pop.2018.05.003
  9. Nieves DJ, Heininger U. Bordetella pertussis. Microbiology spectrum. 2016;4(3):178–193. doi: 10.1128/microbiolspec.EI10-0008-2015
  10. Belcher T, Dubois V, Rivera-Millot A, et al. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence. 2021;12(1):2608–2632. doi: 10.1080/21505594.2021.1980987
  11. Fukui A, Horoguchi Y. Bordetella dermonecrotic toxin exerting toxicity through activation of the small GTPase. Journal of biochemistry. 2004;136(4):415–419. doi: 10.1093/jb/mvh155
  12. Karataev GI, Sinyashina LI, Medkova AYu, Semin EG. Persistence of bacteria Bordetella pertussis and possible mechanism of its formation. Journal of Microbiology, Epidemiology and Immunobiology. 2015;(6):114–121. EDN: ZQJYAF
  13. Kramar LV, Kaplunov KO, Larina TYu, Morozova DYu. Pertussis vaccination: realities and immediate prospects. Medicinal Bulletin. 2018;12(4):41–47. EDN: YRROJF
  14. Prutskova EV, Cherdantsev AP, Andreeva NP. Vaccines and vaccination against whooping cough in children and adults. Infectious diseases: news, opinions, education. 2018;7(2):71–77. doi: 10.24411/2305-3496-2018-12008 EDN: URJAKS
  15. Mikheeva IV, Saltykova TS, Mikheeva MA. Expediency and prospects of pertussis vaccination without age restrictions. Journal of Infectology. 2018; 10(4):14–23. doi: 10.22625/2072-6732-2018-10-4-14-23 EDN: YYNXNJ
  16. Amirthalingam G, Gupta S, Campbell H. Pertussis immenisation and control in England and Wales, 1957 to 2012: a historical review. Euro Surveillance: bulletin European sur les maladies transmissibles. 2013;18(38):20587. doi: 10.2807/1560-7917
  17. Cherry JB, Doustmohammadi S. Pertussis vaccines. Current opinion in pediatrics. 2022;34(2):126–131. doi: 10 1097/MOP 0000000000001108
  18. Domenech de Celles M, Rohani P. Pertussis vaccines, epidemiology and evalution. Nature reviews. Microbiology. 2024;22(11):722–735. doi: 10.1038/s41579-024-01064-8
  19. Prygiel M, Mosiej E, Gorska P, et al. Diphtheria-tetanus-pertussis vaccine: past, current and future. Future microbiology. 2022;17:185–197. doi: 10 2217/fmb-2021-0167
  20. Alekseeva IA, Perelygina OV. Comparative analysis of the use of whole-cell and cell-free pertussis vaccines for the prevention of pertussis infection. Biological products. Prevention, Diagnosis, Treatment. 2017;17(4):207–215. EDN: ZXGLJZ
  21. Greco D, Salmaso S, Mastrantonio P, et al. A controlled trial of two acellular and one whole-cell vaccine against pertussis. Progetto Pertosse Working Group. The New England journal of medicine. 1996;334(6):341–348. doi: 10.1056/NEJM199602083340601
  22. Kapil P, Merkel TJ. Pertussis vaccines and protective immunity. Current opinion in immunology. 2019;59:72–78. doi: 10.1016/j.coi.2019.03.006
  23. Plotkin SA. The pertussis problem. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2014;58:830–833. doi: 10.1093/cid/cit934
  24. Whooping cough vaccines: WHO position, August 2015. WHO Weekly Epidemiological Bulletin. 2015;90(35):433–460. Available from: http://www.who.int/wer/2015/wer9035.pdf?ua=1
  25. Chit A, Zivaripiran H, Shin T, et al. Acellular pertussis vaccines effectiviness over time a systematic review, meta-analysis and modeling study. PLoS One. 2018;13(6):e0197970. doi: 10.1371/journal.pone.0197970
  26. Alghounaim M, Alsaffar Z, Alfraij A, et al. Whole-Cell and Acellular Pertussis Vaccine: Reflections on efficacy. Medical principles and practice: international journal of the Kuwait University, Health Science Centre. 2022;31(4):313–321. doi: 10.1159/000525468.
  27. Bonanni P, Steffen R, Schelling J, et al. Vaccine co-administration in adults: An effective way to improve vaccination coverage. Human Vaccination and Immunotherapeutics. 2023;19(1):2195786. doi: 10.1080/21645515.2023.2195786
  28. Executive Order No. 1122 of the Ministry of Health of the Russian Federation “On approval of the national calendar of preventive vaccinations, the calendar of preventive vaccinations for epidemiological indications and the procedure for carrying out preventive vaccinations” dated December 6, 2021. Available from: https://internet.garant.ru/#/document/403258640/paragraph/1/doclist/772/1/0/6de1f15b-8010-49ec-a612-075f5cf1ca21/1122н:2/ (In Russ.)
  29. Arav-Boger R, Ashkenazi S, Gdalevich M, et al. Seroprevalence of pertussis antibodies among adolescents in Israel. The Israel Medical Association journal. 2000;2(2):174–177. PMID: 10804947
  30. Alekseeva IA, Perelygina OV, Kolyshkina ED. Pertussis vaccines and the role of lipopolysaccharide Bordetella Pertussis. Biologics. Prevention, diagnosis, treatment. 2021;21(1):10–19. doi: 10.30895/2221-996X-2021-21-1-10-19 EDN: PFUQPU
  31. Stepanenko AV, Mindlina AYa. Epidemiological characteristics of whooping cough in the Russian Federation at the present stage. Journal of Infectology. 2020;12(2):142–150. doi: 10.22625/2072-6732-2020-12-2-142-150 EDN: IGNNET
  32. Lomonosova AV. Causes and consequences of untimely vaccination against pertussis infection in the Russian Federation. Journal of Microbiology, Epidemiology and Immunobiology. 2020;97(5):492–502. doi: 10.36233/0372-9311-2020-97-5-11 EDN: PDBBTE
  33. Sandoval T, Bisht A, Maurice AS. The impact of COVID-19 and masking practices on pertussis cases at a large academic medical center (2019–2021). Americal journal of infection control. 2023;51(7):844–846. doi: 10.1016/j.ajic.2022.11.012
  34. Drapkina OM, Avdeev SN, Briko NI, et al. Vaccination during the COVID-19 pandemic. Methodological recommendations. Moscow: ROPNIZ, LLC “Silicef-Polygraph”; 2022. (In Russ.)
  35. Svetlichnaya SV, Elagina LA, Popovich LD. Evaluation of the economic effectiveness of pertussis vaccination based on real clinical practice data. Real clinical practice: data and evidence. 2023;3(1):9–19. doi: 10.37489/2782-3784-myrwd-27 EDN: GYOCBZ
  36. Chuprinina RP, Alekseeva IA, Obukhov YuI, et al. The effectiveness of pertussis immunoprophylaxis with combined vaccines containing whole-cell or cell-free pertussis vaccine. Biologics. 2014;(4(52)):4–13. EDN: TBRISB
  37. Alekseeva IA, Perelygina OV, Nikityuk NF, et al. The epidemiological process of whooping cough in the Russian Federation. Medical Almanac. 2019;(3–4(60)):24–32. EDN: NUTGAY
  38. Moradpour J, Chit A, Besada-Lombana S, Grootendorst P. Overview of global vaccine ecosystem. Expert review of vaccines. 2023;22(1):749–763. doi: 10.1080/14760584.2023.2250433
  39. Rodrigues F, Ziade N, Jatuworapruk K, et al. The Impact of Social Media on vaccination: A Narrative review. J Korean Med Sci. 2023;38(40):e326. doi: 10.3346/jkms.2023.38.e326
  40. Nian X, Liu H, Cai M, et al. Coping strategies for pertussis resurgence. Vaccines (Basel). 2023;11(5):889. doi: 3390/vaccines11050889
  41. Keech C, Miller VE, Rizzardi B, et al. Immunogenicity and safety of Bpze1, an intranasal live attenuated pertussis vaccine, Versus Tetanus-Diphtheria-acellular Pertussis Vaccine: A Randomised, Double-Blind, Phase 2b Trial. Lancet. 2023;401:843–855. doi: 10.1016/S0140-6736(22)026644-7
  42. Guiso N, Meade BD, Wirsing von Konig CH. Pertussis vaccines: The first hundred years. Vaccine. 2020;38(5):1271–1276. doi: 10.1016/j.vaccine.2019.11.022
  43. Divenere AM, Amengor D, Silva RP, et al. Blockade of the alenylate cyclase toxin synergizes with opsonizing antibodies to protect mice against Bordetella pertussis. mBio. 2022;13(4):e0152722. doi: 10.1128/mbio.01527-22
  44. Lecorvaisier F. Impact of vaccination on the evolution of Bordetella pertussis. Medicine sciences. 2024;40(2):161–166. doi: 10.1051/medsci/2023219
  45. Hausdorf WP, Madhi SA, Kang G, et al. Facilitating the Development of Urgently Required Combination Vaccines. Lancet Glob Health. 2024;12: e1059–e1067. doi: 10.1016/S2214-109X(24)00092-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).