Robotic systems for casualty evacuation

Cover Page

Cite item

Full Text

Abstract

The special military operation of the Russian Armed Forces in Ukraine demonstrated the high efficacy of robotic systems in a variety of applications. Robotic systems are increasingly being used in combat zones for various purposes, including casualty evacuation. Automated, robot-based systems enable faster, more effective casualty evacuation to safety zones, saving the lives of military personnel and healthcare professionals and improving the quality of care. Systems originally intended for cargo transportation are currently being upgraded and adapted to the specific requirements of casualty evacuation. This work examined existing robotic systems, with a focus on their potential use in casualty evacuation. Both Russian and international robotic systems for casualty evacuation were assessed. The analysis was based on the technical specifications and performance of the examined systems. The analysis identified key areas for developing robotic systems for casualty evacuation. Furthermore, their classification was proposed, taking into account the performance capabilities and tactical use.

About the authors

Il’ya V. Markin

Military Innovation Technopolis “ERA”

Author for correspondence.
Email: ilya.markin.92@bk.ru
ORCID iD: 0000-0002-9334-910X
SPIN-code: 6021-7645

Cand. Sci. (Technical)

Russian Federation, Anapa

Evgeniy A. Zhurbin

Military Innovation Technopolis “ERA”

Email: era_otd6@mil.ru
ORCID iD: 0000-0002-0867-3838
SPIN-code: 8426-1354

M. D., Ph. D. (Medicine)

Russian Federation, Anapa

Il’ya V. Savinov

Military Innovation Technopolis “ERA”

Email: saviinoov@gmail.com
ORCID iD: 0009-0000-3607-2370
SPIN-code: 8831-4370

Senior operator of the 3rd company (scientific)

Russian Federation, Anapa

References

  1. Shelepov AM, Parfenov VD. Medical evacuation problems and prospects. Bulletin of the Russian Military Medical Academy. 2002;(1(7)):121–126. EDN: BBBUCI
  2. Saiyan MM, Zekun DN. Analysis of designs, characteristics and test methods of electric evacuation trolleys. Bulletin of the Automobile and Highway Institute. 2024;(1(48)):68–75. EDN: XVHRKO
  3. Ovchinnikov DV, Ivchenko EV. Military medicine of modern hybrid wars. Russian Military Medical Academy Reports. 2024;43(3):331–340. doi: 10.17816/rmmar633158 EDN: EHVYUH
  4. Yoo AC, Gilbert GR, Broderick TJ. Military robotic combat casualty extraction and care. Surgical Robotics. In: Rosen J, Hannaford B, Satava R, eds. Surgical Robotics. Boston, MA: Springer US; 2010. P. 13–32. doi: 10.1007/978-1-4419-1126-1
  5. Borodavkin VA, Nikulin EN, Krasilnikov RV. Prospects of development of marine robotic complexes of nato member states. Vestnik obrazovaniya i razvitiya nauki Rossiyskoy akademii yestestvennykh nauk. 2021;25(4):5–14. doi: 10.26163/RAEN.2021.47.51.001 EDN: KZQCRZ
  6. Makarenko SI. Military robots г the current state and prospects of improvement. Systems of Control, Communication and Security. 2016;(2):73–132. EDN: WKBPWJ
  7. Williams A, Sebastian B, Ben-Tzvi P. Review and Analysis of Search, Extraction, Evacuation, and Medical Field Treatment Robots. Journal of Intelligent & Robotic Systems. 2019;96:401–418. doi: 10.1007/s10846-019-00991-6
  8. Soldatov EA. The main ways of creation and development of medical robotics for the medical service of the Russian Army. Izvestiya SFedU. Engineering sciences. 2016;(2(175)):230–240. EDN: VWVAFZ
  9. Nagovitsin AI, Molotkova BB. Robot-technical complexes of military purpose, prospects of their application in missile arms and artillery of the Russian Armed forces. Izvestiya SFedU. Engineering sciences. 2017;(1(186)):6–20. doi: 10.18522/2311-3103-2017-1-620 EDN: YJMIZL
  10. Komchenkov VI, Petrov VF, Simonov SB, Terentev АI. Development method of robotic unmanned ground-based assets. Izvestiya SFedU. Engineering sciences. 2013;(3(140)):25–30. EDN: PYMMTH
  11. Rodionov VV, Filippov SI, Varabin DA. Unified robotics control system. Izvestiya SFedU. Engineering Sciences. 2018;(1(195)):128–140. doi: 10.23683/2311-3103-2018-1-128-140 EDN: XNGPLN
  12. Parubets PE. Analysis of vibration load of a wheeled robot-nurse using simulation. Politekhnicheskiy molodezhnyy zhurnal. 2020;(3(44)):1–9. doi: 10.18698/2541-8009-2020-3-586 EDN: VCGNJI
  13. Golota AS, Ivchenko EV, Krassii AB, et al. Development of combat medical robots in the us armed forces. Military Medical Journal. 2014;335(4):65–67. EDN: SXEUUJ
  14. Lum MJ, Friedman DC, King HH, Donlin R. Teleoperation of a surgical robot via airborne wireless radio and transatlantic internet links. In: Field and Service Robotics. Results of the 6th international conference (FSR07), Chamonix, France, July 9–12, 2007. Springer Tracts in Advanced Robotics; 2008. Р. 305–314. doi: 10.1007/978-3-540-75404-6_29
  15. Lum MJ, Rosen J, King H, et al. Telesurgery via Unmanned Aerial Vehicle (UAV) with a field deployable surgical robot. Stud Health Technol Inform. 2007;125:313–315. PMID: 17377292
  16. Osborn J, Rocca M. Conceptual study of LSTAT integration to robotics and other advanced medical technologies. Final Report. U.S. Army Medical Research and Materiel Command, Fort Detrick; 2004.
  17. Curley K, Broderick T, Marchessault R, et al. Surgical robotics — the next steps. Integrated research team. Final Report. Telemedicine and Advanced Technology Research Center. U.S. Army Medical Research and Materiel Command, Fort Detrick; 2005.
  18. Vetlugin R, Vasilkov A. Robototekhnicheskie kompleksy SV SShA i vzglyady voennyh specialistov na ih primenenie. Zarubezhnoe voennoe obozrenie, 2016;(6):55–59 (In Russ.)
  19. Fisun AYа, Samokhvalov IM, Goncharov AV. Ways to reduce mortality in modern hybrid warfare: injured to a surgeon or surgery to a wounded? Military Medical Journal. 2020;341(1):20–29. EDN: NWMTQW
  20. Pamplin JC, Remondelli MH, Thota D, et al. Revolutionizing Combat Casualty Care: The Power of Digital Twins in Optimizing Casualty Care Through Passive Data Collection. Military Medicine. 2025;190(1–2):27–32. doi: 10.1093/milmed/usae249
  21. Yamauchi BM. PackBot: a versatile platform for military robotics. Proceedings of SPIE — The International Society for Optical Engineering. 2004;5422:228–237. doi: 10.1117/12.538328
  22. Hu J, Lim Y-J, Inventors. Robotic First Responder System and Method. United States patent US20140150806A1. 2014 Jun. 5.
  23. Edlinger R, Föls C, Nüchter A. An innovative pick-up and transport robot system for casualty evacuation. In: 2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). 2022. P. 67–73. doi: 10.1109/SSRR56537.2022.10018818
  24. Theobald D, inventor; Vecna Technologies Inc., assignee. Mobile extraction-assist robot. United States patent US7719222B2. 2010 May 18.
  25. Saputra RP, Kormushev P. Resqbot: A mobile rescue robot for casualty extraction. Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. 2018. P. 239–240. doi: 10.1145/3173386.3176990
  26. Gardubey NYu, Gusev VV, Siz’ko DV, Khaysanov RV. Small-sized robotic payload delivery vehicles. In: Problems of technical support for troops in modern conditions: Proceedings of the III Interuniversity Scientific and Practical Conference, 16 February 2018. 2018. P. 121–127. (In Russ.) EDN: UXMLLO
  27. Pshikhopov VKh, Gontar DN, Martyanov OV. Conceptual Approaches to the Formation of Scenarios for the Combat Use of Groups of Robotic Systems. Systems of Control, Communication and Security. 2022;(3): 138–182. doi: 10.24412/2410-9916-2022-3-138-182 EDN: UBXDTV
  28. Morozov PV, Zykova NR, Karshova AM. Biometric identification system palm images. In: Intellectual capital of the XXI century. IV International research competition. Penza; 2021. Р. 20–25. EDN: BKGRIN
  29. Gromov V, Lipsman D, Mosalev S, et al. Inventor; «Zavod im. V.A. Degtyareva». Multi-functional robot system of providing military operations. Russian Federation patent RU2533229C2. 2013 January 10. (In Russ.) EDN: GWIWKI
  30. Zhirnov MV, Mitrofanova SV, Fedorova EV. Combat ground-based robotic means in mechanized infantry units: integration justification and application options. Aerospace forces. Theory and practice. 2020;(14):8–16. EDN: KZGTBS
  31. Curley K, Broderick T, Marchessault R, et al. Surgical robotics — the next steps. Integrated research team final report. Telemedicine and Advanced Technology Research Center. U.S. Army Medical Research and Materiel Command, Fort Detrick; 2005.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).