Molecular epidemiology of malaria vector mosquitoes in coastal areas of Southern Vietnam

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: This study presents the results of morphological genus-level identification of mosquitoes and molecular-genetic species-level identification of female Anopheles mosquitoes — the primary malaria vectors — collected in the Can Gio Biosphere Reserve, Ho Chi Minh Province. In addition, five species of human malaria parasites of the genus Plasmodium (P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi) were screened in the collected material.

AIM: To assess the species composition of vectors responsible for the most relevant and socially significant vector-borne infections in southern Vietnam during the dry and rainy seasons, and to identify active malaria foci.

METHODS: Arthropod collection was carried out in October 2024 and May 2025 in the Can Gio Biosphere Reserve (Ho Chi Minh Province). Adult hematophagous dipterans were collected using aspirators from hosts, entomological nets from vegetation, as well as from external surfaces of residential and utility buildings. Immature stages were collected by filtering water samples from natural and artificial water bodies suitable for mosquito breeding. Species identification of arthropods was performed based on morphological characteristics using dichotomous keys. Mosquito species identification and Plasmodium detection were conducted using polymerase chain reaction (PCR). Confirmation of Plasmodium ovale was performed by Sanger sequencing.

RESULTS: A total of 414 Anopheles mosquitoes were identified, of which 356 specimens (86%) belonged to An. epiroticus. DNA of Plasmodium parasites was detected in 32 mosquito samples: 17 (53.1%) positive for P. falciparum and 15 (46.9%) for P. ovale.

CONCLUSION: Despite a general decline in malaria incidence in Vietnam, foci of “forest malaria” remain active. In coastal areas of southern Vietnam, An. epiroticus plays an important role in maintaining active malaria transmission. In addition to spreading the causative agent of tropical malaria (P. falciparum), these vectors may also contribute to the transmission of P. ovale, thus sustaining foci of tertian malaria and potentially leading to cases of mixed infections.

About the authors

Mo Thi Luong

Joint Russian-Vietnamese Tropical Research and Technological Center, Southern Branch

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-6035-5933
SPIN-code: 3460-3083

Cand. Sci. (Chemistry)

Viet Nam, Ho Chi Minh City

Vladimir A. Romanenko

Military Medical Academy

Author for correspondence.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-5900-9008
SPIN-code: 9855-9483

Lecturer

Russian Federation, Saint Petersburg

Aleksei I. Solovyev

Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-3731-1756
SPIN-code: 2502-8831

MD, Dr. Sci. (Medicine), Associate Professor

Russian Federation, Saint Petersburg

Roman V. Gudkov

Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-5498-0479
SPIN-code: 8311-6296

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Saint Petersburg

Konstantin V. Kozlov

Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-4398-7525
SPIN-code: 7927-9076

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Dmitrii V. Ovchinnikov

Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-8408-5301
SPIN-code: 5437-3457

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Saint Petersburg

Aleksandr I. Rakin

Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-9085-1287
SPIN-code: 2511-4127

Senior Lecturer

Russian Federation, Saint Petersburg

Alexey V. Khalin

Zoological Institute of the Russian Academy of Sciences

Email: hallisimo@yandex.ru
ORCID iD: 0000-0002-0662-8857
SPIN-code: 4751-1120

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Sergey V. Aybulatov

Zoological Institute of the Russian Academy of Sciences

Email: Sergei.Aibulatov@zin.ru
ORCID iD: 0000-0002-0699-1701
SPIN-code: 6765-3577

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

References

  1. Stone A. Preliminary keys to the mosquitoes of Vietnam. South East Asia Mosquito Project, Department of Entomology, Smithsonian Institution, US National Museum, 1966. 92 p.
  2. Panthusiri P, Harrison BA, Harbach RE, et al. Illustrated keys to the mosquitoes of Thailand IV. Anopheles. Southeast Asian J Trop Med Public Health. 2006;37 Suppl 2:1–128. PMID: 17262930
  3. Guha P, Das A, Dutta S, Chaudhuri TK. Rapid and efficient protocol for DNA extraction from fresh and frozen human blood samples. J Clin Lab Anal. 2018;32(1):e22181. doi: 10.1002/jcla.22181
  4. Gilbert MT, Moore W, Melchior L, Worobey M. DNA extraction from dry museum beetles without conferring external morphological damage. PLoS One. 2007;2(3):e272. doi: 10.1371/journal.pone.0000272
  5. Van Long B, Allen G, Brauny M, et al. Molecular surveillance and temporal monitoring of malaria parasites in focal Vietnamese provinces. Malar J. 2020;19(1):458. doi: 10.1186/s12936-020-03561-6
  6. Van den Eede P, Van HN, Van Overmeir C, et al. Human Plasmodium knowlesi infections in young children in central Vietnam. Malar J. 2009;8:249. doi: 10.1186/1475-2875-8-249
  7. Obsomer V, Defourny P, Coosemans M. Anopheles species associations in Southeast Asia: indicator species and environmental influences. Parasit Vectors. 2013;6:136. doi: 10.1186/1756-3305-6-136
  8. Huynh LN, Tran LB, Nguyen HS, et al. Mosquitoes and Mosquito-Borne Diseases in Vietnam. Insects. 2022;13(12):1076. doi: 10.3390/insects13121076
  9. Ngo CT, Dubois G, Sinou V, et al. Diversity of Anopheles mosquitoes in Binh Phuoc and Dak Nong Provinces of Vietnam and their relation to disease. Parasit Vectors. 2014;7:316. doi: 10.1186/1756-3305-7-316
  10. Garros C, Nguyen CV, Trung HD, et al. Distribution of Anopheles in Vietnam, with particular attention to malaria vectors of the Anopheles minimus complex. Malar J. 2008;7:11. doi: 10.1186/1475-2875-7-11
  11. Huynh LN, Tran LB, Nguyen HS, et al. Mosquitoes and mosquito-borne diseases in Vietnam. Insects. 2022;13(12):1076. doi: 10.3390/insects13121076
  12. Marchand RP, Culleton R, Maeno Y, et al. Co-infections of Plasmodium knowlesi, P. falciparum, and P. vivax among Humans and Anopheles dirus Mosquitoes, Southern Vietnam. Emerg Infect Dis. 2011;17(7):1232–1239. doi: 10.3201/eid1707.101551
  13. Gleason NN, Fisher GU, Blumhardt R, et al. Plasmodium ovale malaria acquired in Viet-Nam. Bull World Health Organ. 1970;42(3):399–403. PMID: 4392940
  14. Thanh PV, Van Hong N, Van Van N, et al. Epidemiology of forest malaria in Central Vietnam: the hidden parasite reservoir. Malar J. 2015;14:86. doi: 10.1186/s12936-015-0601-y
  15. Maude RJ, Ngo TD, Tran DT, et al. Risk factors for malaria in high incidence areas of Viet Nam: a case-control study. Malar J. 2021;20(1):373. doi: 10.1186/s12936-021-03908-7
  16. World Health Organization (WHO). Guidelines for malaria. Geneva: World Health Organization; 2022.
  17. Sanh NH, Van Dung N, Thanh NX, et al. Forest malaria in central Vietnam. Am J Trop Med Hyg. 2008;79(5):652–654. PMID: 18981498
  18. Hung le Q, Vries PJ, Giao PT, et al. Control of malaria: a successful experience from Viet Nam. Bull World Health Organ. 2002;80(8):660–666. PMID: 12219158
  19. Maeno Y. Molecular epidemiology of mosquitoes for the transmission of forest malaria in south-central Vietnam. Trop Med Health. 2017;45:27. doi: 10.1186/s41182-017-0065-6
  20. Gleason NN, Fisher GU, Blumhardt R, et al. Plasmodium ovale malaria acquired in Viet-Nam. Bull World Health Organ. 1970;42(3):399–403. PMID: 4392940
  21. Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–2729. doi: 10.1093/molbev/mst197

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Research design.

Download (196KB)
3. Fig. 2. Can Gio Nature Reserve, Ho Chi Minh Province: a gathering place for blood-sucking vectors.

Download (453KB)
4. Fig. 3. Distinctive morphological features of An. epiroticus (Pyretophorus group): a — wing, ASP on vein R1; b — maxillary palps; c — segments VI, VII and genitalia; d — proepisternal setae; e — tarsomeres and light scales on the tibia.

Download (190KB)
5. Fig. 4. Distinctive morphological features of An. gigas mosquitoes (Gigas group): a — wing, veins C and R-R1; b — hind femur; c — PSP and HP veins C; d — wing margin; e — vein A1.

Download (243KB)
6. Fig. 5. Phylogenetic tree constructed on the basis of a comparison of partial nucleotide sequences of the 18s rRNA gene of the studied sequence obtained from a female mosquito sample of the genus Anopheles with partial 18s rRNA sequences of five species of plasmodia — causative agents of human malaria — using the maximum likelihood method.

Download (47KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).