Comorbidity and differential diagnosis of idiopathic normal pressure hydrocephalus and Alzheimer disease

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: The progression of intellectual and memory impairment is a pressing public health challenge and often leads to disability in older adults. Idiopathic normal pressure hydrocephalus represents one of the causes of dementia and is frequently comorbid with neurodegenerative disorders, particularly Alzheimer disease. Such comorbidity substantially complicates differential diagnosis. Therefore, the search of diagnostic algorithms that allow clinicians to address this problem is essential.

AIM: This work aimed to improve the diagnostic accuracy of idiopathic normal pressure hydrocephalus, Alzheimer disease, and their combination by applying a comprehensive clinical, neuropsychological, laboratory, and neuroimaging assessment.

METHODS: All patients (171 individuals) were divided into groups according to the disease. All subjects underwent extended neuropsychological testing, gait assessment using standardized scales, neuroimaging interpretation using neuroradiological scales, and cerebrospinal fluid biomarker assay of amyloidogenic and tau-pathology–related proteins.

RESULTS: Patients with normal pressure hydrocephalus demonstrated a predominantly dysregulatory cognitive impairment pattern, whereas memory impairment was secondary. In the combined Alzheimer disease–idiopathic normal pressure hydrocephalus syndrome, both dysregulatory and amnestic patterns coexisted (with the amnestic component predominating). Markedly reduced gait speed was a highly sensitive marker of idiopathic normal pressure hydrocephalus. Patients with the comorbidity also demonstrated reduced gait speed, although to a lesser degree. Cerebrospinal fluid biomarker profile in normal pressure hydrocephalus was characterized by reduced tau and phosphorylated tau levels with normal β-amyloid. In contrast, comorbid patients demonstrated reduced β-amyloid and increased tau and phosphorylated tau concentrations. Neuroimaging analysis revealed that idiopathic normal pressure hydrocephalus is characterized by pronounced ventricular enlargement in the absence of substantial cortical atrophy. Typical features include an acute callosal angle, elevated Evans Index and Z-Evans Index, and a < 1.0 brain-to-ventricle ratio. In combined Alzheimer disease–idiopathic normal pressure hydrocephalus syndrome, the neuroimaging pattern integrates the features of both diseases. The severity of cortical atrophy assessed using the medial temporal lobe atrophy scale and Koedam scale is closely associated with cerebrospinal fluid biomarker alterations. Key diagnostic features were identified that allow the clinician to suspect the combined Alzheimer disease–idiopathic normal pressure hydrocephalus syndrome.

CONCLUSION: Identification of specific cognitive impairment, gait speed reduction, characteristic neuroimaging findings, and cerebrospinal fluid biomarker profile as part of comprehensive diagnostic approach enables timely and clear differential diagnosis between idiopathic normal pressure hydrocephalus, Alzheimer disease, and their combination.

About the authors

Anna V. Smolyannikova

Medical Detachment (Special Purpose, Yekaterinburg) of the 354th Military Clinical Hospital of the Ministry of Defense of Russia

Author for correspondence.
Email: anna_smolyannikova@mail.ru
ORCID iD: 0000-0002-7144-259X
SPIN-code: 3389-5969
Russian Federation, Yekaterinburg

Vladimir Y. Lobzin

Military Medical Academy; Saint Petersburg University

Email: anna_smolyannikova@mail.ru
ORCID iD: 0000-0003-3109-8795
SPIN-code: 7779-3569

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Peterburg; Saint Peterburg

Andrey Y. Emelin

Military Medical Academy; Saint Petersburg University

Email: anna_smolyannikova@mail.ru
ORCID iD: 0000-0002-4723-802X
SPIN-code: 9650-1368

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg; Saint Petersburg

Gaspar V. Gavrilov

Military Medical Academy

Email: anna_smolyannikova@mail.ru
ORCID iD: 0000-0002-8594-1533
SPIN-code: 9931-3861

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Kristina A. Kolmakova

Military Medical Academy

Email: anna_smolyannikova@mail.ru
ORCID iD: 0000-0001-8657-1901
SPIN-code: 3058-8088

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Igor V. Litvinenko

Military Medical Academy

Email: anna_smolyannikova@mail.ru
ORCID iD: 0000-0001-8988-3011
SPIN-code: 6112-2792

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

References

  1. Gavrilova SI. The pre-dementia period of Alzheimer’s disease: current approaches to diagnosis and medication therapy. Doktor.Ru. 2017;(8(137)):44–49. EDN: ZXWOPP
  2. Kolmakova KA. Violation of cerebral and systemic hemodynamics in Alzheimer’s disease [dissertation]. Saint Petersburg; 2019. 141 p. (In Russ.) EDN: PNTKRJ
  3. Lobzin VYu, Alizade MRO, Lapina AV, et al. Idiopathic normal pressure hydrocephalus and Alzheimer’s disease in clinical practice: comorbidity and differentiation. Medical alphabet. 2020;(22):36–43. doi: 10.33667/2078-5631-2020-22-36-34 EDN: WYNNYO
  4. Chakravarty A. Unifying concept for Alzheimer’s disease, vascular dementia and normal pressure hydrocephalus — a hypothesis. Med Hypotheses. 2004;63(5):827–833. doi: 10.1016/j.mehy.2004.03.029
  5. Gavrilov GV. Idiopathic normal-pressure hydrocephalus: pathogenesis, diagnosis, differentiated surgical treatment [dissertation]. Saint Petersburg; 2020. 332 p. (In Russ.) EDN: IHPJTK
  6. Bräutigam K, Vakis A, Tsitsipanis C. Pathogenesis of idiopathic Normal Pressure Hydrocephalus: A review of knowledge. J Clin Neurosci. 2019;61:10–13. doi: 10.1016/j.jocn.2018.10.147
  7. Andersson J, Rosell M, Kockum K, et al. Prevalence of idiopathic normal pressure hydrocephalus: A prospective, population-based study. PLoS One. 2019;14(5):e0217705. doi: 10.1371/journal.pone.0217705
  8. Bonney PhA, Briggs RG, Wu K, et al. Pathophysiological Mechanisms Underlying Idiopathic Normal Pressure Hydrocephalus: A Review of Recent Insights. Front Aging Neurosci. 2022;14:866313. doi: 10.3389/fnagi.2022.866313 EDN: RKYBXN
  9. Jaraj D, Rabiei K, Marlow Th, et al. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology. 2014;82(16):1449–1454. doi: 10.1212/WNL.0000000000000342
  10. Golomb J, Wisoff J, Miller DC, et al. Alzheimer’s disease comorbidity in normal pressure hydrocephalus: prevalence and shunt response. J Neurol Neurosurg Psychiatry. 2000;68(6):778–781. doi: 10.1136/jnnp.68.6.778
  11. Emelin AYu, Odinak MM, Lobzin VYu, Galaeva AA. Alzheimer’s disease — heterogenous disease. Russian Military Medical Academy Reports. 2021;40(S4):37–41. EDN: EYWFLL
  12. Bech-Azeddine R, Høgh P, Juhler M, et al. Idiopathic normal-pressure hydrocephalus: clinical comorbidity correlated with cerebral biopsy findings and outcome of cerebrospinal fluid shunting. J Neurol Neurosurg Psychiatry. 2007;78(2):157–161. doi: 10.1136/jnnp.2006.095117
  13. Emelin AYu, Lobzin VYu, Vorobyov SV. Cognitive impairment: a guide for doctors. Moscow; 2019. 416 p. (In Russ.) EDN: MBBBBE
  14. Pyrgelis ES, Velonakis G, Papageorgiou SG, et al. Imaging Markers for Normal Pressure Hydrocephalus: An Overview. Biomedicines. 2023;11(5):1265. doi: 10.3390/biomedicines11051265 EDN: MSVAAJ
  15. Nakajima M, Yamada Sh, Miyajima M, et al. Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus (Third Edition): Endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir. 2021;61(2):63–97. doi: 10.2176/nmc.st.2020-0292
  16. Clifford RJ Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–562. doi: 10.1016/j.jalz.2018.02.018
  17. Kockum K, Lilja-Lund O, Larsson E-M, et al. The idiopathic normal-pressure hydrocephalus Radscale: a radiological scale for structured evaluation. Eur J Neurol. 2018;25(3):569–576. doi: 10.1111/ene.13555
  18. Ishida Т, Murayama Т, Kobayashi S. Current research of idiopathic normal pressure hydrocephalus: Pathogenesis, diagnosis and treatment. World J Clin Cases. 2023;11(16):3706–3713. doi: 10.12998/wjcc.v11.i16.3706 EDN: QWOVDH

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparative characteristics of the time spent on performing the 10-metre and TUG tests in the study groups of patients.

Download (136KB)
3. Fig. 2. Concentrations of amyloidosis biomarker proteins in the study groups of patients.

Download (83KB)
4. Fig. 3. a–c: assessment of the severity of atrophy of the mediolateral temporal lobes (hippocampi) of the brain (MTA scale): a — Alzheimer's disease, MTA = 4 points; b — idiopathic normotensive hydrocephalus, MTA = 2 points; c — combination of Alzheimer's disease and idiopathic normotensive hydrocephalus, MTA = 3 points; d–f: Koedam scale for assessing atrophy of the parietal lobe: d — Alzheimer's disease, Koedam = 3; e — idiopathic normotensive hydrocephalus, Koedam = 1; f — combination of Alzheimer's disease and idiopathic normotensive hydrocephalus, Koedam = 2; g–i: iNPHRadScale: g — Alzheimer's disease, iNPHRadScale = 5 points; h — idiopathic normotensive hydrocephalus, iNPHRadScale = 10 points; i — combination of Alzheimer's disease and idiopathic normotensive hydrocephalus; iNPHRadScale = 7 points.

Download (318KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).