Association of polymorphic variants of the gene BDNF in human adaptation to extreme environmental conditions and life expectancy

Cover Page

Cite item

Full Text

Abstract

BDNF is a member of the neurotrophin protein family, which plays an important role in the development, maintenance and plasticity of the central and peripheral nervous system. BDNF is expressed in neurons of the developing and adult mammalian nervous system, where it is produced in relatively small amounts, but has high activity, causing biological reactions at picomolar concentrations. It promotes the differentiation of neurons from stem cells, enhances neurite growth and synaptogenesis, and can prevent programmed cell death (apoptosis). The role of BDNF in the regulation of energy homeostasis is also great: by stimulating glucose transport and mitochondrial biogenesis, BDNF enhances cell bioenergetics and protects neurons from damage and neurodegenerative diseases. It is BDNF that controls nutrition patterns (regulating appetite) and types of physical activity, modulates glucose metabolism in peripheral tissues and mediates the positive effect of exercise and fasting on cognitive functions, mood, cardiovascular function and peripheral metabolism. This article presents a mini-review of the data accumulated to date on the role of polymorphic variants of the BDNF gene in the processes of active physiological and psychological adaptation and their comparison with the data obtained by the authors in the study of psychological adaptation to working conditions in the Arctic region of the Russian Federation. The given materials allow us to conclude that optimal adaptation to extreme external conditions is most likely provided genetically by the presence of the Val/Val genotype of the BDNF gene (also associated, in turn, with the probable extension of the individual survival period), and psychologically by the increased use of creative ability.

About the authors

Irina M. Spivak

Military Medical Academy; Saint Petersburg State University

Email: Irina_spivak@hotmail.com
ORCID iD: 0000-0003-1351-8696
SPIN-code: 6740-5392

senior researcher

Russian Federation, Saint Petersburg; Saint Petersburg

Andrey N. Zhekalov

Military Medical Academy

Email: Jann1960@mail.ru
ORCID iD: 0000-0001-6580-4075
SPIN-code: 3154-9228

senior researcher

Russian Federation, Saint Petersburg

Dmitry L. Spivak

N.P. Bechtereva Human Brain Institute, Russian Academy of Sciences

Email: d.spivak@mail.ru
ORCID iD: 0000-0001-7276-5182
SPIN-code: 6764-3561

leading expert

Russian Federation, Saint Petersburg

Pavel A. Shapovalov

Military Medical Academy

Email: pavel.shapovalov.2001@mail.ru
ORCID iD: 0000-0003-0639-017X
SPIN-code: 2498-7308

5th year cadet

Russian Federation, Saint Petersburg

Ruslan V. Timoshenko

Military Medical Academy; Saint Petersburg State University

Email: rtimbio@yandex.ru

Bachelor of Biology Faculty

Russian Federation, Saint Petersburg; Saint Petersburg

Ruslan I. Glushakov

Military Medical Academy

Email: Glushakovruslan@gmail.com
ORCID iD: 0000-0002-0161-5977
SPIN-code: 6860-8990

M.D., D.Sc. (Medicine)

Russian Federation, Saint Petersburg

Konstantin P. Golovko

Military Medical Academy

Author for correspondence.
Email: labws@mail.ru
ORCID iD: 0000-0002-1584-1748
SPIN-code: 2299-6153

M.D., D.Sc. (Medicine)

Russian Federation, Saint Petersburg

References

  1. Lau H, Fitri A, Ludin M, Rajab NF, Shahar S. Identification of Neuroprotective Factors Associated with Successful Ageing and Risk of Cognitive Impairment among Malaysia Older Adults. Curr Gerontol Geriatr Res. 2017;2017:4218756. doi: 10.1155/2017/4218756
  2. Prabu P, Poongothai S, Shanthirani CS, et al. Altered circulatory levels of miR-128, BDNF, cortisol and shortened telomeres in patients with type 2 diabetes and depression. Acta Diabetol. 2020;57(7):799–807. doi: 10.1007/s00592-020-01486-9
  3. Vasconcelos-Moreno MP, Fries GR, Gubert C, et al. Telomere Length, Oxidative Stress, Inflammation and BDNF Levels in Siblings of Patients with Bipolar Disorder: Implications for Accelerated Cellular Aging. Int J Neuropsychopharmacol. 2017;20(6):445–454. doi: 10.1093/ijnp/pyx001
  4. Zhou JX, Li HC, Bai XJ, et al. Functional Val66Met polymorphism of Brain-derived neurotrophic factor in type 2 diabetes with depression in Han Chinese subjects. Behav Brain Funct. 2013;9:34. doi: 10.1186/1744-9081-9-34
  5. Chao MV, Rajagopal R, Lee FS. Neurotrophin signalling in health and disease. Clin Sci (Lond). 2006;110(2):167–173. doi: 10.1042/CS20050163
  6. Markham A, Cameron I, Bains R, et al. Brain-derived neurotrophic factor-mediated effects on mitochondrial respiratory coupling and neuroprotection share the same molecular signalling pathways. Eur J Neurosci. 2012;35(3):366–374. doi: 10.1111/j.1460-9568.2011.07965.x
  7. Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab. 2014;25(2):89–98. doi: 10.1016/j.tem.2013.10.006
  8. Lebrun B, Bariohay B, Moyse E, Jean A. Brain-derived neurotrophic factor (BDNF) and food intake regulation: a minireview. Auton Neurosci. 2006;126–127:30–38. doi: 10.1016/j.autneu.2006.02.027
  9. Koppel I, Aid-Pavlidis T, Jaanson K, et al. Tissue-specific and neural activity-regulated expression of human BDNF gene in BAC transgenic mice. BMC Neurosci. 2009;10:68. doi: 10.1186/1471-2202-10-68
  10. Dean C, Liu H, Staudt T, et al. Distinct subsets of Syt-IV/BDNF vesicles are sorted to axons versus dendrites and recruited to synapses by activity. J Neurosci. 2012;32(16):5398–5413. doi: 10.1523/JNEUROSCI.4515-11.2012
  11. Totoson P, Santini C, Prigent-Tessier A, Marie C, Demougeot C. Endothelial TrkB receptor activation controls vascular tone of rat middle cerebral artery. Vascul Pharmacol. 2021;141:106930. doi: 10.1016/j.vph.2021.106930
  12. Cheng A, Wan R, Yang JL, et al. Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun. 2012;3:1250. doi: 10.1038/ncomms2238
  13. Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74(2):246–260. doi: 10.1016/j.neuron.2012.04.006
  14. Pollock GS, Vernon E, Forbes ME, et al. Effects of early visual experience and diurnal rhythms on BDNF mRNA and protein levels in the visual system, hippocampus, and cerebellum. J Neurosci. 2001;21(11):3923–3931. doi: 10.1523/JNEUROSCI.21-11-03923.2001
  15. Dolci C, Montaruli A, Roveda E, et al. Circadian variations in expression of the trkB receptor in adult rat hippocampus. Brain Res. 2003;994(1):67–72. doi: 10.1016/j.brainres.2003.09.018
  16. Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 2012;16(6):706–722. doi: 10.1016/j.cmet.2012.08.012
  17. Mattson MP. Evolutionary aspects of human exercise — born to run purposefully. Ageing Res Rev. 2012;11(3):347–352. doi: 10.1016/j.arr.2012.01.007
  18. Hopkins ME, Nitecki R, Bucci DJ. Physical exercise during adolescence versus adulthood: differential effects on object recognition memory and brain-derived neurotrophic factor levels. Neuroscience. 2011;194:84–94. doi: 10.1016/j.neuroscience.2011.07.071
  19. Molteni R, Wu A, Vaynman S, et al. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience. 2001;23(2):429–404. doi: 10.1016/j.neuroscience.2003.09.020
  20. Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci. 2004;20(10):2580–2590. doi: 10.1111/j.1460-9568.2004.03720.x
  21. Stranahan AM, Khalil D, Gould E. Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus. 2007;17(11):1017–1022. doi: 10.1002/hipo.20348
  22. Kobilo T, Liu QR, Gandhi K, et al. Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem. 2011;18(9):605–609. doi: 10.1101/lm.2283011
  23. Winter B, Breitenstein C, Mooren FC, et al. High impact running improves learning. Neurobiol Learn Mem. 2007;87(4):597–609. doi: 10.1016/j.nlm.2006.11.003
  24. Griffin EW, Mullally S, Foley C, et al. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav. 2011;104(5):934–941. doi: 10.1016/j.physbeh.2011.06.005
  25. Duman CH, Schlesinger L, Russell DS, Duman RS. Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res. 2008;1199:148–158. doi: 10.1016/j.brainres.2007.12.047
  26. Marais L, Stein DJ, Daniels WM. Exercise increases BDNF levels in the striatum and decreases depressive-like behavior in chronically stressed rats. Metab Brain Dis. 2009;24(4):587–597. doi: 10.1007/s11011-009-9157-2
  27. Sartori CR, Vieira AS, Ferrari EM, et al. The antidepressive effect of the physical exercise correlates with increased levels of mature BDNF, and proBDNF proteolytic cleavage-related genes, p11 and tPA. Neuroscience. 2011;180:9–18. doi: 10.1016/j.neuroscience.2011.02.055
  28. Levay EA, Govic A, Penman J, Paolini AG, Kent S. Effects of adult-onset calorie restriction on anxiety-like behavior in rats. Physiol Behav. 2007;92(5):889–896. doi: 10.1016/j.physbeh.2007.06.018
  29. Kashiwaya Y, Bergman C, Lee JH, et al. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2013;34(6):1530–1539. doi: 10.1016/j.neurobiolaging.2012.11.023
  30. Riddle MC, McKenna MC, Yoon YJ, et al. Caloric restriction enhances fear extinction learning in mice. Neuropsychopharmacology. 2013;38(6):930–937. doi: 10.1038/npp.2012.268
  31. Vaynman S, Ying Z, Gomez-Pinilla F. The select action of hippocampal calcium calmodulin protein kinase II in mediating exercise-enhanced cognitive function. Neuroscience. 2007;144(3):825–833. doi: 10.1016/j.neuroscience.2006.10.005
  32. Wrann CD, White JP, Salogiannnis J, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013;18(5):649–659. doi: 10.1016/j.cmet.2013.09.008
  33. Chen MJ, Russo-Neustadt AA. Exercise activates the phosphatidylinositol 3-kinase pathway. Brain Res Mol Brain Res. 2005;135(1–2): 181–193. doi: 10.1016/j.molbrainres.2004.12.001
  34. Aguiar AS Jr, Castro AA, Moreira EL, et al. Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: involvement of hippocampal plasticity via AKT, CREB and BDNF signaling. Mech Ageing Dev. 2011;132(11–12):560–567. doi: 10.1016/j.mad.2011.09.005
  35. Stranahan AM, Mattson MP. Recruiting adaptive cellular stress responses for successful brain ageing. Nat Rev Neurosci. 2012;13(3):209–216. doi: 10.1038/nrn3151
  36. Yang B, Slonimsky JD, Birren SJ. A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nat Neurosci. 2002;5(6):539–545. doi: 10.1038/nn0602-853
  37. Wan R, Weigand LA, Bateman R, et al. Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability. J Neurochem. 2014;129(4):573–580. doi: 10.1111/jnc.12656
  38. Griffioen KJ, Wan R, Brown TR, et al. Aberrant heart rate and brainstem brain-derived neurotrophic factor (BDNF) signaling in a mouse model of Huntington’s disease. Neurobiol Aging. 2012;33(7):1481.e1–5. doi: 10.1016/j.neurobiolaging.2011.11.030
  39. Wan R, Camandola S, Mattson MP. Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. J Nutr. 2003;133(6):1921–1929. doi: 10.1093/jn/133.6.1921
  40. Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol. 2009;5(6):311–322. doi: 10.1038/nrneurol.2009.54
  41. Spivak IM, Lemeshchenko AV, Agafonov PV, et al. Relationship of creativity and genetic factors in military services in the conditions of the arctic region. Bulletin of the Russian Military Medical Academy. 2021;23(4):139–146. (In Russ.) doi: 10.17816/brmma84997
  42. Spivak DL, Shapovalov PA, Trandina AE, et al. Psychological resources of longevity and their genetic correlates. Science and world. 2022;(11 (111)):67–71. (In Russ.)
  43. Spivak I, Zhekalov A, Glushakov R, Nyrov V, Spivak D. Creativity and Life Expectancy in Strategies of Adaptation. In: Bylieva D., Nordmann A., eds. Technologies in a Multilingual Environment. XXII Professional Culture of the Specialist of the Future 2022. Lecture Notes in Networks and Systems, vol 636. Cham: Springer; 2022. P. 202–210. doi: 10.1007/978-3-031-26783-3_18
  44. De Sousa RAL, Improta-Caria AC, Aras-Júnior R, et al. Physical exercise effects on the brain during COVID-19 pandemic: links between mental and cardiovascular health. Neurol Sci. 2021;42(4): 1325–1334. doi: 10.1007/s10072-021-05082-9
  45. Shin CH, Kim KH, Jeeva S, Kang SM. Towards Goals to Refine Prophylactic and Therapeutic Strategies Against COVID-19 Linked to Aging and Metabolic Syndrome. Cells. 2021;10(6):1412. doi: 10.3390/cells10061412

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».