Immune-mediated and autoimmune disorders of central nervous system after new coronavirus disease
- Authors: Kozlova A.О.1, Zabirova A.K.1, Baydina E.V.1, Zakharova M.N.1
-
Affiliations:
- Research Center of Neurology
- Issue: Vol 41, No 4 (2022)
- Pages: 445-453
- Section: Reviews
- URL: https://journals.rcsi.science/RMMArep/article/view/111889
- DOI: https://doi.org/10.17816/rmmar111889
- ID: 111889
Cite item
Full Text
Abstract
Autoimmune and immune-mediated diseases of the central nervous system are relatively rare, but potentially severe and disabling complications of the novel coronavirus infection (COVID-19). Despite the lack of exact prevalence of this group among other complications of COVID-19, its study lately receives increasing attention. Big variety of mechanisms could be involved into pathogenesis of autoimmune and immune-mediated disorders of the central nervous system, including the aberrant immune response to direct viral invasion, neuroinflammation and activation of T- and B-lymphocytes, formation of autoantibodies as a result of cross-reactivity or due to molecular mimicry, etc. This review discusses recent data on the pathogenetic mechanisms as well as clinical features of the most common complications of COVID-19: myelitis, MOG-associated diseases, spectrum of neuromyelitis optica disorders. Multiple potential biomarkers detected in post-COVID-19 patients and their diagnostic and clinical value are discussed. Given the increased number of patients having COVID-19, the study of such diseases, their connection with infection, and possible mechanisms seems to be an extremely relevant area of modern neuroimmunology.
Full Text
##article.viewOnOriginalSite##About the authors
Alexandra О. Kozlova
Research Center of Neurology
Email: alykozlova96@gmail.com
ORCID iD: 0000-0002-2992-0199
M.D., neurologist
Russian Federation, MoscowAlfiia Kh. Zabirova
Research Center of Neurology
Email: alfijasabirowa@gmail.com
ORCID iD: 0000-0001-8544-3107
M.D., neurologist
Russian Federation, MoscowEkaterina V. Baydina
Research Center of Neurology
Email: baydina@neurology.ru
ORCID iD: 0000-0001-5911-5855
SPIN-code: 9864-9147
M.D., Ph.D. (Medicine)
Russian Federation, MoscowMaria N. Zakharova
Research Center of Neurology
Author for correspondence.
Email: zakharova@neurology.ru
ORCID iD: 0000-0002-1072-9968
SPIN-code: 4277-2860
M.D., D.Sc. (Medicine), Professor
Russian Federation, MoscowReferences
- Inciardi RM, Lupi L, Zaccone G, et al. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819–824. doi: 10.1001/jamacardio.2020.1096
- Zoghi G, Moosavy SH, Yavarian S, et al. Gastrointestinal implications in COVID-19. BMC Infect Dis. 2021;21(1):1135. doi: 10.1186/s12879-021-06824-y
- Gómez-Mesa JE, Galindo-Coral S, Montes MC, Muñoz Martin AJ. Thrombosis and Coagulopathy in COVID-19. Curr Probl Cardiol. 2021;46(3):100742. doi: 10.1016/j.cpcardiol.2020.100742
- Sachdeva M, Gianotti R, Shah M, et al. Cutaneous manifestations of COVID-19: Report of three cases and a review of literature. J Dermatol Sci. 2020;98(2):75–81. doi: 10.1016/j.jdermsci.2020.04.011
- Seah I, Agrawal R. Can the Coronavirus Disease 2019 (COVID-19) Affect the Eyes? A Review of Coronaviruses and Ocular Implications in Humans and Animals. Ocul Immunol Inflamm. 2020;28(3): 391–395. doi: 10.1080/09273948.2020.1738501
- Espíndola OM, Gomes YCP, Brandão CO, et al. Inflammatory Cytokine Patterns Associated with Neurological Diseases in Coronavirus Disease 2019. Ann Neurol. 2021;89(5):1041–1045. doi: 10.1002/ana.26041
- Bernard-Valnet R, Perriot S, Canales M, et al. Encephalopathies Associated With Severe COVID-19 Present Neurovascular Unit Alterations Without Evidence for Strong Neuroinflammation. Neurol Neuroimmunol Neuroinflamm. 2021;8(5): e1029. doi: 10.1212/nxi.0000000000001029
- Moody R, Wilson K, Flanagan KL, et al. Adaptive Immunity and the Risk of Autoreactivity in COVID-19. Int J Mol Sci. 2021;22(16):8965. doi: 10.3390/ijms22168965
- Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi: 10.1056/nejmoa2002032
- Chou SH, Beghi E, Helbok R, et al. Global Incidence of Neurological Manifestations Among Patients Hospitalized With COVID-19-A Report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium. JAMA Netw Open. 2021;4(5):e2112131. doi: 10.1001/jamanetworkopen.2021.12131
- Ariño H, Heartshorne R, Michael BD, et al. Neuroimmune disorders in COVID-19. J Neurol. 2022;269(6):2827–2839. doi: 10.1007/s00415–022–11050-w
- Liu JM, Tan BH, Wu S, et al. Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection. J Med Virol. 2021;93(3):1304–1313. doi: 10.1002/jmv.26570
- Arbour N, Ekandé S, Côté G, et al. Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E. J Virol. 1999;73(4):3326–3337. doi: 10.1128/jvi.73.4.3326–3337.1999
- Sarwar S, Rogers S, Mohamed AS, et al. Multiple Sclerosis Following SARS-CoV-2 Infection: A Case Report and Literature Review. Cureus. 2021;13(10): e19036. doi: 10.7759/cureus.19036
- Fleischer M, Köhrmann M, Dolff S, et al. Observational cohort study of neurological involvement among patients with SARS-CoV-2 infection. Ther Adv Neurol Disord. 2021;14:1756286421993701. doi: 10.1177/175628642199370
- Jarius S, Pache F, Körtvelyessy P, et al. Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients. J Neuroinflammation. 2022;19(1):19. doi: 10.1186/s12974-021-02339-0
- Remsik J, Wilcox JA, Babady NE, et al. Inflammatory Leptomeningeal Cytokines Mediate COVID-19 Neurologic Symptoms in Cancer Patients. Cancer Cell. 2021;39(2):276–283.e3. doi: 10.1016/j.ccell.2021.01.007
- Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259–264. doi: 10.1038/s41586-021-03553-9
- Dotan A, Muller S, Kanduc D, et al. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021;20(4):102792. doi: 10.1016/j.autrev.2021.102792
- Baranzini SE, Wang J, Gibson RA, et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet. 2009;18(4):767–778. doi: 10.1093/hmg/ddn388
- Lourenço CM, Dupré N, Rivière JB, et al. Expanding the differential diagnosis of inherited neuropathies with non-uniform conduction: Andermann syndrome. J Peripher Nerv Syst. 2012;17(1):123–127. doi: 10.1111/j.1529-8027.2012.00374.x
- Song E, Bartley CM, Chow RD, et al. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep Med. 2021;2(5):100288. doi: 10.1016/j.xcrm.2021.100288
- Xiao M, Zhang Y, Zhang S, et al. Antiphospholipid Antibodies in Critically Ill Patients With COVID-19. Arthritis Rheumatol. 2020;72(12):1998–2004. doi: 10.1002/art.41425
- Bertin D, Brodovitch A, Beziane A, et al. Anticardiolipin IgG Autoantibody Level Is an Independent Risk Factor for COVID-19 Severity. Arthritis Rheumatol. 2020;72(11):1953–1955. doi: 10.1002/art.41409
- Wang EY, Mao T, Klein J, et al. Diverse Functional Autoantibodies in Patients with COVID-19. Nature. 2021;595(7866):283–288. doi: 10.1101/2020.12.10.20247205
- Woodruff MC, Ramonell RP, Nguyen DC, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020;21(12):1506–1516. doi: 10.1038/s41590-020-00814-z
- Jenks SA, Cashman KS, Zumaquero E, et al. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity. 2018;49(4):725–739.e6. doi: 10.1016/j.immuni.2018.08.015. Erratum in: Immunity. 2020;52(1):203. doi: 10.1016/j.immuni.2019.12.005
- Latorre D. Autoimmunity and SARS-CoV-2 infection: Unraveling the link in neurological disorders. Eur J Immunol. 2022;52(10): 1561–1571. doi: 10.1002/eji.202149475
- Garg RK, Paliwal VK, Gupta A. Spinal cord involvement in COVID-19: A review. J Spinal Cord Med. 2021;11:1–15. doi: 10.1080/10790268.2021.1888022
- West TW, Hess C, Cree BA. Acute transverse myelitis: demyelinating, inflammatory, and infectious myelopathies. Semin Neurol. 2012;32(2):97–113. doi: 10.1055/s-0032-1322586
- Román GC, Gracia F, Torres A, et al. Acute Transverse Myelitis (ATM): Clinical Review of 43 Patients With COVID-19-Associated ATM and 3 Post-Vaccination ATM Serious Adverse Events With the ChAdOx1 nCoV-19 Vaccine (AZD1222). Front Immunol. 2021;12:653786. doi: 10.3389/fimmu.2021.653786
- Kozlova AO, Eliseeva DD, Simaniv TO, et al. Autoimmune spinal cord lesions associated with novel coronavirus infection. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(Suppl 1):21–28. (In Russ.) doi: 10.14412/2074-2711-2022.1S-21-28
- Ramanathan S, Mohammad S, Tantsis E, et al. Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination. J Neurol Neurosurg Psychiatry. 2018;89(2):127–137. doi: 10.1136/jnnp-2017-316880
- Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/s0140-6736(20)30628-0
- Lambe J, McGinley MP, Moss BP, et al. Myelin oligodendrocyte glycoprotein-IgG associated disorders (MOGAD) following SARS-CoV-2 infection: A case series. J Neuroimmunol. 2022;370:577933. doi: 10.1016/j.jneuroim.2022.577933
- Colantonio MA, Nwafor DC, Jaiswal S, et al. Myelin oligodendrocyte glycoprotein antibody-associated optic neuritis and myelitis in COVID-19: a case report and a review of the literature. Egypt J Neurol Psychiatr Neurosurg. 2022;58(1):62. doi: 10.1186/s41983-022-00496-4
- Mariotto S, Carta S, Dinoto A, et al. Is there a correlation between MOG-associated disorder and SARS-CoV-2 infection? Eur J Neurol. 2022;29(6):1855–1858. doi: 10.1111/ene.15304
- Marignier R, Hacohen Y, Cobo-Calvo A, et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol. 2021;20(9):762–772. Erratum in: Lancet Neurol. 2021;20(10):e6. Erratum in: Lancet Neurol. 2022;21(1):e1. PMID: 34418402. doi: 10.1016/s1474-4422(21)00218-0
- Yi MH, Lee YS, Kang JW, et al. NFAT5-dependent expression of AQP4 in astrocytes. Cell Mol Neurobiol. 2013;33(2):223–232. doi: 10.1007/s10571-012-9889-0
- Carnero Contentti E, Correale J. Neuromyelitis optica spectrum disorders: from pathophysiology to therapeutic strategies. J Neuroinflammation. 2021;18(1):208. doi: 10.1186/s12974-021-02249-1
- Machado C, Amorim J, Rocha J, et al. Neuromyelitis optica spectrum disorder and varicella-zoster infection. J Neurol Sci. 2015;358(1Pt 2):520–521. doi: 10.1016/j.jns.2015.09.374
- Harris MK, Maghzi AH, Etemadifar M, et al. Acute demyelinating disorders of the central nervous system. Curr Treat Options Neurol. 2009;11(1):55–63. doi: 10.1007/s11940-009-0008-6
- Mirmosayyeb O, Ghaffary EM, Bagherieh S, et al. Post COVID-19 infection neuromyelitis optica spectrum disorder (NMOSD): A case report-based systematic review. Mult Scler Relat Disord. 2022;60:103697. doi: 10.1016/j.msard.2022.103697
Supplementary files
