Some Serologic Markers of Toxoplasma gondii, Cytomegalovirus and Rubella Virus in Pregnant Women in Saint Petersburg
- Authors: Markin I.V.1, Vasilev V.V.1,2, Rogozina N.V.1, Zolotarev A.Y.3, Nikolaeva A.E.4, Ivanova R.A.1,4
-
Affiliations:
- Federal Research and Clinical Center for Infectious Diseases under the Federal Medical Biological Agency
- North-Western State Medical University named after I.I. Mechnikov
- City Polyclinic No. 107
- Academician I.P. Pavlov First Saint Petersburg State Medical University
- Issue: Vol 29, No 1 (2025)
- Pages: 35-44
- Section: Original study article
- URL: https://journals.rcsi.science/RFD/article/view/292751
- DOI: https://doi.org/10.17816/RFD642179
- EDN: https://elibrary.ru/XDBVFA
- ID: 292751
Cite item
Abstract
BACKGROUND: Currently, research investigating specific immunity to various TORCH pathogens (Toxoplasma gondii, cytomegalovirus, rubella virus) in pregnant women remains relevant.
AIM: The aim of the study was to evaluate the detection rates of the main serologic markers of TORCH in pregnant women in Saint Petersburg, Russia.
METHODS: A retrospective analysis of the screening of pregnant women (n = 6605) was performed for the presence and levels of specific anti-Toxoplasma gondii, anti-rubella, and anti-cytomegalovirus immunoglobulins M and G in the blood.
RESULTS: The rubella seroprevalence rate was 98.2% (n = 4428), with the highest number of seronegative women in the age group of 31 to 35 years. In 8.4% of cases, the serum level of anti-rubella immunoglobulin G was below the protective level. Anti-cytomegalovirus immunoglobulin G was found in 1632 (81.9%) pregnant women, with a significant age-related increase in the number of seropositive women (p < 0.001). Specific anti-Toxoplasma gondii immunoglobulin G was found in 28% (n = 1375) of pregnant women. The percentage of seropositive women also increased with age (p < 0.001), with the highest level reported in women aged > 40 years (40.74%).
CONCLUSION: The high level of rubella seroprevalence in pregnant women suggests that testing for anti-rubella antibodies should be performed only in the second trimester. Anti-cytomegalovirus screening is recommended for pregnant women with known risk factors for congenital cytomegalovirus infection. It is recommended to continue anti-Toxoplasma gondii screening because of the high percentage of Toxoplasma gondii seronegative pregnant women in Russia.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Ivan V. Markin
Federal Research and Clinical Center for Infectious Diseases under the Federal Medical Biological Agency
Author for correspondence.
Email: i.v.markin@mail.ru
ORCID iD: 0000-0001-9922-401X
SPIN-code: 6232-6834
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgValery V. Vasilev
Federal Research and Clinical Center for Infectious Diseases under the Federal Medical Biological Agency; North-Western State Medical University named after I.I. Mechnikov
Email: vcubed@ya.ru
ORCID iD: 0000-0003-2579-2799
SPIN-code: 5644-9877
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint Petersburg; Saint PetersburgNatalia V. Rogozina
Federal Research and Clinical Center for Infectious Diseases under the Federal Medical Biological Agency
Email: lelekin96@mail.ru
ORCID iD: 0000-0003-0968-6291
SPIN-code: 8945-8293
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgAlexei Yu. Zolotarev
City Polyclinic No. 107
Email: A.Zolotarev@P107.SPB.RU
ORCID iD: 0009-0006-5906-3286
Russian Federation, Saint Petersburg
Alla E. Nikolaeva
Academician I.P. Pavlov First Saint Petersburg State Medical University
Email: alla-nikolaeva2007@yandex.ru
ORCID iD: 0000-0003-3802-5468
SPIN-code: 6472-0617
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgRegina A. Ivanova
Federal Research and Clinical Center for Infectious Diseases under the Federal Medical Biological Agency; Academician I.P. Pavlov First Saint Petersburg State Medical University
Email: reg-iv@mail.ru
ORCID iD: 0000-0003-1809-9443
SPIN-code: 5153-0751
MD, Cand. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint PetersburgReferences
- Ford-Jones EL, Kellner JD. “Cheap torches”: an acronym for congenital and perinatal infections. Pediatr Infect Dis J. 1995;14(7):638–640.
- Hon KL, Leung KKY, Leung AKC, et al. Congenital infections in Hong Kong: beyond TORCH. Hong Kong Med J. 2020;26(4):318–322. doi: 10.12809/hkmj208398
- Kuyumch’yan SK, Vasil’ev VV, Alekseeva NP. Risk factors and prognosis of some actual congenital infections. Journal Infectology. 2016;8(1):38–44. EDN: VTNSJT
- Lobzin YuV, Vasilev VV. Key aspects congenital infection. Journal Infectology. 2014;6(3):5–14. EDN: STQTXJ
- Rumbo J, Madariaga-P I, Salazar-Reviakina A, et al. Association between maternal infections during pregnancy and congenital defects in their offspring: a population-based case-control study in Bogota and Cali, Colombia 2001-2018. J Matern Fetal Neonatal Med. 2021;8:1–5. doi: 10.1080/14767058.2021.1999924
- Mardanly SG, Avdonina AS, Rotanov SV, Gotvyanskaya TP. The detection rate of serological markers for torch infections in the population of the Moscow city. Epidemiology and infectious diseases. Current items. 2015;(4):44–49. EDN: UMOXCD
- Mussi-Pinhata MM, Yamamoto AY, Aragon DC, et al. Seroconversion for cytomegalovirus infection during pregnancy and fetal infection in a highly seropositive population: ‘The BraCHS Study’. J Infect Dis. 2018;218(8):1200–1204. doi: 10.1093/infdis/jiy321
- Naumenko NS, Nikonov AP, Astsaturova OR, Belova AV. Structure of infectious screening of pregnants: Russian and overall practice. V.F. Snegirev Archives of Obstetrics and Gynecology. 2018;5(1):26–30. EDN: YUFHDW doi: 10.18821/2313-8726-2018-5-1-26-30
- Coppola T, Mangold JF, Cantrell S, Permar SR. Impact of maternal immunity on congenital cytomegalovirus birth prevalence and infant outcomes: a systematic review. Vaccines (Basel). 2019;7(4):129. doi: 10.3390/vaccines7040129
- Ter-Stepanyan MM. Prevalence of viral infections included in the TORCH complex among women of reproductive age in Armenia. Fundamentalis scientiam. 2017;(4(5)):94–95. (In Russ.) EDN: YPATBJ
- Vilibic-Cavlek T, Ljubin-Sternak S, Ban M, et al. Seroprevalence of TORCH infections in women of childbearing age in Croatia. J Matern Fetal Neonatal Med. 2011;24(2):280–283. doi: 10.3109/14767058.2010.485233
- Payne H, Barnabas S. Congenital cytomegalovirus in Sub-Saharan Africa-a narrative review with practice recommendations. Front Public Health. 2024;12:1359663. doi: 10.3389/fpubh.2024.1359663
- Warnecke JM, Pollmann M, Borchardt-Lohölter V, et al. Seroprevalences of antibodies against ToRCH infectious pathogens in women of childbearing age residing in Brazil, Mexico, Germany, Poland, Turkey and China. Epidemiol Infect. 2020;148:e271. doi: 10.1017/S0950268820002629
- Mocanu AG, Gorun F, Ciohat I, et al. Simultaneous seroprevalence to Toxoplasma gondii, cytomegalovirus and rubella virus in childbearing women from Western Romania. Medicina (Kaunas). 2021;57(9):927. doi: 10.3390/medicina57090927
- Pleyer U, Gross U, Schlüter D, et al. Toxoplasmosis in Germany. Dtsch Arztebl Int. 2019;116(25):435–444. doi: 10.3238/arztebl.2019.0435
- Oyeyemi OT, Oyeyemi IT, Adesina IA, et al. Toxoplasmosis in pregnancy: a neglected bane but a serious threat in Nigeria. Parasitology. 2020;147(2):127–134. doi: 10.1017/S0031182019001525
- Terracciano E, Amadori F, Pettinicchio V, et al. Strategies for elimination of rubella in pregnancy and of congenital rubella syndrome in high and upper-middle income countries. J Prev Med Hyg. 2020;61(1):E98–E108. doi: 10.15167/2421-4248/jpmh2020.61.1.1310
- Robinson E, de Valk H, Villena I, et al. National perinatal survey demonstrates a decreasing seroprevalence of Toxoplasma gondii infection among pregnant women in France, 1995 to 2016: impact for screening policy. Euro Surveill. 2021;26(5):1900710. doi: 10.2807/1560-7917.ES.2021.26.5.1900710
- Kaushik A, Verma S, Kumar P. Congenital rubella syndrome: A brief review of public health perspectives. Indian J Public Health. 2018;62(1):52–54. doi: 10.4103/ijph.IJPH_275_16
- Chekhlyayeva TS, Tsvirkun OV, Turayeva NV, et al. Assessing the 2019 rubella elimination status in the Russian federation. Russian journal of infection and immunity. 2022;12(1):85–94. EDN: EEQRQE doi: 10.15789/2220-7619-ATR-1663
- Barkinkhoyeva LA, Chekhlyayeva TS, Turayeva NV, et al. Rubella epidemic situation in Russia in 2019. In: Modern problems of epidemiology, microbiology and hygiene. Proceedings of the XII All-Russian scientific-practical conference of young scientists and specialists, Rospotrebnadzor. Rostov-on-Don, October 21-22, 2020. Rostov-on-Don: MiniType; 2020. P. 21–23. (In Russ.)
- Bichurina MA, Zheleznova NV, Sharova AA. Measles and rubella in the north-west of Russia in period of elimination. Journal Infectology. 2021;13(4):106–112. EDN: CHGCGZ doi: 10.22625/2072-6732-2021-13-4-106-112
- Han L, Li R, Xiong W, et al. Prevalence of preconception TORCH infections and its influential factors: evidence from over 2 million women with fertility desire in southern China. BMC Womens Health. 2023;23(1):425. doi: 10.1186/s12905-023-02560-4
- Hamid KM, Onoja AB, Tofa UA, Garba KN. Seroprevalence of cytomegalovirus among pregnant women attending Murtala Mohammed Specialist Hospital Kano, Nigeria. Afr Health Sci. 2014;14(1):125–130. doi: 10.4314/ahs.v14i1.19
- Fowler K, Mucha J, Neumann M, et al. A systematic literature review of the global seroprevalence of cytomegalovirus: possible implications for treatment, screening, and vaccine development. BMC Public Health. 2022;22(1):1659. doi: 10.1186/s12889-022-13971-7
- Qin X, Zhang S, Liu H, et al. Seroepidemiology of TORCH Infections among 1.7 million women of childbearing age in rural China: A Population-Based Cross-Sectional Study. Am J Trop Med Hyg. 2021;105(5):1202–1209. doi: 10.4269/ajtmh.20-0137
- Dinkar A, Singh J. Seroprevalence of Toxoplasma, Rubella, CMV and HSV infection at a teaching hospital: A 7 year study from North India. J Family Med Prim Care. 2020;9(5):2253–2257. doi: 10.4103/jfmpc.jfmpc_176_20
- Manjunathachar HV, Singh KN, Chouksey V, et al. Prevalence of torch infections and its associated poor outcome in high-risk pregnant women of Central India: Time to think for prevention strategies. Indian J Med Microbiol. 2020;38(3–4):379–384. doi: 10.4103/ijmm.IJMM_20_136
- Wang LC, Yan F, Ruan JX, et al. TORCH screening used appropriately in China?—three years results from a teaching hospital in northwest China. BMC Pregnancy Childbirth. 2019;19(1):484. doi: 10.1186/s12884-019-2642-7
- Pesch MH, Saunders NA, Abdelnabi S. Cytomegalovirus infection in pregnancy: prevention, presentation, management and neonatal outcomes. J Midwifery Womens Health. 2021;66(3):397–402. doi: 10.1111/jmwh.13228
- Korobkov NA, Vasil’yev VV, Lobzin YuV, et al. Infections in obstetrics: a guide for physicians. Moscow: SpetsLit; 2019. 397 p. (In Russ.)
- Calvert A, Vandrevala T, Parsons R, et al. Changing knowledge, attitudes and behaviours towards cytomegalovirus in pregnancy through film-based antenatal education: a feasibility randomised controlled trial of a digital educational intervention. BMC Pregnancy Childbirth. 2021;21(1):565. doi: 10.1186/s12884-021-03979-z
- Boppana SB, van Boven M, Britt WJ, et al. Vaccine value profile for cytomegalovirus. Vaccine. 2023;41 Suppl 2:S53–S75. doi: 10.1016/j.vaccine.2023.06.020
- Valencia SM, Rochat E, Harnois MJ, et al. Vaccination with a replication-defective cytomegalovirus vaccine elicits a glycoprotein B-specific monoclonal antibody repertoire distinct from natural infection. NPJ Vaccines. 2023;8(1):154. doi: 10.1038/s41541-023-00749-0
- Felín MS, Wang K, Moreira A, et al. Building programs to eradicate toxoplasmosis part I: introduction and overview. Curr Pediatr Rep. 2022;10(3):57–92. doi: 10.1007/s40124-022-00269-w
- Korsakova II, Zhirkova IN, Verenitsyn IV. Toxoplasmosis: current epidemiologic situation. Russian journal of infection and immunity. 2017;(S):34. (In Russ.) EDN: XVJOVN
- Berdysh D, Mirzoyeva R, Mirzoyev MS, Saakova K. Epidemiology of toxoplasmosis. Danish Scientific Journal. 2020;(38–1):27–29. (In Russ.) EDN: YCZONB
- Rostami A, Riahi SM, Contopoulos-Ioannidis DG, et al. Acute Toxoplasma infection in pregnant women worldwide: A systematic review and meta-analysis. PLoS Negl Trop Dis. 2019;13(10):e0007807. doi: 10.1371/journal.pntd.0007807
- Rostami A, Riahi SM, Gamble HR, et al. Global prevalence of latent toxoplasmosis in pregnant women: a systematic review and meta-analysis. Clin Microbiol Infect. 2020;26(6):673–683. doi: 10.1016/j.cmi.2020.01.008
- Bigna JJ, Modiyinji AF, Nansseu JR, et al. Burden of hepatitis E virus infection in pregnancy and maternofoetal outcomes: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2020;20(1):426. doi: 10.1186/s12884-020-03116-2
- Araujo Coelho DR, Oliveira da Luz R, Soares Melegario C, et al. Knowledge gaps and educational opportunities in congenital toxoplasmosis: a narrative review of Brazilian and global perspectives. Trop Med Infect Dis. 2024;9(6):137. doi: 10.3390/tropicalmed9060137
- Schneider MO, Faschingbauer F, Kagan KO, et al. Toxoplasma gondii infection in pregnancy – recommendations of the Working Group on Obstetrics and Prenatal Medicine (AGG – Section on Maternal Disorders). Geburtshilfe Frauenheilkd. 2023;83(12):1431–1445. doi: 10.1055/a-2111-7394
- Felín MS, Wang K, Moreira A, et al. Building programs to eradicate toxoplasmosis part II: education. Curr Pediatr Rep. 2022;10(3):93–108. doi: 10.1007/s40124-022-00267-y
Supplementary files
