Prediction of cardiovascular risk in infants with bronchopulmonary dysplasia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Respiratory, neurological and other outcomes of bronchopulmonary dysplasia in infants are well documented. However, the incidence and severity of cardiovascular abnormalities require further research.

AIM: The aim of the study was to establish cardiovascular risk criteria in infants with bronchopulmonary dysplasia and develop a mathematical model to predict cardiovascular abnormalities.

METHODS: A total of 1931 perinatal discharge records were analyzed. The final analysis included 274 source records. The main group was divided into two subgroups: 91 infants with cardiovascular abnormalities and 46 infants without cardiovascular abnormalities. The analysis included 225 parameters of perinatal history, laboratory and functional diagnostic tests. Discriminant and correlation analyses were performed using SPSS for statistical data processing.

RESULTS: Cardiovascular abnormalities were found in 66.4% of infants with bronchopulmonary dysplasia at 3 months of age and were represented by morphological changes such as functional patent foramen ovale, patent ductus arteriosus, and prolonged exposure to these conditions. Circulatory failure, transient pulmonary hypertension and combinations of cardiovascular abnormalities were reported.

Nine significant cardiovascular risk factors were identified, such as patent ductus arteriosus, gestational age ≤ 32 weeks, use of two doses of surfactant, time of prenatal care enrollment, duration of mechanical ventilation and oxygen dependence > 28 days, grade III–IV cerebral ischemia, severe retinopathy, body weight < 1 kg.

A formula was developed to predict a low, moderate, or high cardiovascular risk (98%).

CONCLUSION: In infants with bronchopulmonary dysplasia at 3 months of age, estimated individual cardiovascular risk helps differentiate the approach to preventing heart and blood vessel damage.

About the authors

Zhanna A. Tsareva

Children’s City Clinical Hospital No. 9

Author for correspondence.
Email: dmb9zhanna@yandex.ru
ORCID iD: 0009-0005-6459-763X
SPIN-code: 6185-9920
Russian Federation, Yekaterinburg

Sofya A. Tsarkova

Ural State Medical University

Email: tsarkova_ugma@bk.ru
ORCID iD: 0000-0003-4588-5909
SPIN-code: 8649-9681

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Yekaterinburg

Yuliya L. Belkina

Ural State Medical University

Email: ybelkina287@gmail.com
ORCID iD: 0009-0000-3925-9122
SPIN-code: 2492-6800

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Yekaterinburg

Yuliya A. Trunova

Ural State Medical University

Email: trunovaj@bk.ru
ORCID iD: 0000-0001-9261-4111
SPIN-code: 1938-9892

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Yekaterinburg

References

  1. Schmidt AR, Ramamoorthy C. Bronchopulmonary dysplasia. Paediatr Anaesth. 2022;32(2):174–180. doi: 10.1111/pan.14365
  2. Eriksson L, Haglund B, Odlind V, et al. Prenatal inflammatory risk factors for development of bronchopulmonary dysplasia. Pediatr Pulmonol. 2014;49(7):665–672. doi: 10.1002/ppul.22881
  3. Kusuda S, Fujimura M, Sakuma I, et al. Morbidity and mortality of infants with very low birth weight in Japan: center variation. Pediatrics. 2006;118(4):e1130–1138. doi: 10.1542/peds.2005-2724
  4. Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015;314(10):1039–1051. doi: 10.1001/jama.2015.10244
  5. Sahni M, Mowes AK. Bronchopulmonary dysplasia. [Updated 2023 Jun 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539879/
  6. Poindexter BB, Feng R, Schmidt B, et al. Comparisons and limitations of current definitions of bronchopulmonary dysplasia for the Prematurity and Respiratory Outcomes Program. Ann Am Thorac Soc. 2015;12(12):1822–1830. doi: 10.1513/AnnalsATS.201504-218OC
  7. Walsh MC, Szefler S, Davis J, et al. Summary proceedings from the bronchopulmonary dysplasia group. Pediatrics. 2006;117(3 Pt 2):S52–S56. doi: 10.1542/peds.2005-0620I
  8. Lagatta JM, Hysinger EB, Zaniletti I, et al. The impact of pulmonary hypertension in preterm infants with severe bronchopulmonary dysplasia through 1 year. J Pediatr. 2018;203:218–224.e3. doi: 10.1016/j.jpeds.2018.07.035
  9. Valenzuela D, Moya F, Luco M, Tapia JL. The role of pulmonary hypertension on bronchopulmonary dysplasia. Rev Chil Pediatr. 2017;88(6):699–706. (In Spanish) doi: 10.4067/S0370-41062017000600699
  10. Mezu-Ndubuisi OJ, Agarwal G, Raghavan A, et al. Patent ductus arteriosus in premature neonates. Drugs. 2012;72(7):907–916. doi: 10.2165/11632870-000000000-00000
  11. Collaco JM, Romer LH, Stuart BD, et al. Frontiers in pulmonary hypertension in infants and children with bronchopulmonary dysplasia. Pediatr Pulmonol. 2012;47(11):1042–1053. doi: 10.1002/ppul.22609
  12. Bhandari A, McGrath-Morrow S. Long-term pulmonary outcomes of patients with bronchopulmonary dysplasia. Semin Perinatol. 2013;37(2):132–137. doi: 10.1053/j.semperi.2013.01.010
  13. Starr MC, Wilson AC. Systemic hypertension in infants with bronchopulmonary dysplasia. Curr Hypertens Rep. 2022;24(6):193–203. doi: 10.1007/s11906-022-01179-4
  14. Bjorkman KR, Miles KG, Bellew LE, et al. Patent ductus arteriosus and lung magnetic resonance imaging phenotype in moderate and severe bronchopulmonary dysplasia-pulmonary hypertension. Am J Respir Crit Care Med. 2024;210(3):318–328. doi: 10.1164/rccm.202310-1733OC
  15. Barkhuizen M, Abella R, Vles JSH, et al. Antenatal and perioperative mechanisms of global neurological injury in congenital heart disease. Pediatr Cardiol. 2021;42(1):1–18. doi: 10.1007/s00246-020-02440-w
  16. Lanciotti L, Pasqualini M, Correani A, et al. Who needs a second dose of exogenous surfactant? J Pediatr. 2023;261:113535. doi: 10.1016/j.jpeds.2023.113535
  17. Arriola-Lopez AE, Martinez-Perez ME, Martinez-Castellanos MA. Retinal vascular changes in preterm infants: heart and lung diseases and plus disease. J AAPOS. 2017;21(6):488–491.e1. doi: 10.1016/j.jaapos.2017.08.004
  18. Sehgal A, Ruoss JL, Stanford AH, et al. Hemodynamic consequences of respiratory interventions in preterm infants. J Perinatol. 2022;42(9):1153–1160. doi: 10.1038/s41372-022-01422-5 Erratum in: J Perinatol. 2022;42(8):1147–1148. doi: 10.1038/s41372-022-01453-y
  19. Kayton A, Timoney P, Vargo L, Perez JA. A review of oxygen physiology and appropriate management of oxygen levels in premature neonates. Adv Neonatal Care. 2018;18(2):98–104. doi: 10.1097/ANC.0000000000000434
  20. Rolnik DL, Selvaratnam RJ, Wertaschnigg D, et al. Routine first trimester combined screening for preterm preeclampsia in Australia: A multicenter clinical implementation cohort study. Int J Gynaecol Obstet. 2022;158(3):634–642. doi: 10.1002/ijgo.14049

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector


 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).