Нейротропные и иммуномодулирующие свойства инновационной композиции биофлавоноидов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Актуальность. Флавоноиды, класс растительных полифенолов, обладают широким спектром биологических свойств — нейро- и иммунотропных, антиоксидантных, противовоспалительных, эпигеном-модулирующих, — вовлеченных в механизмы коррекции при различных патологических процессах, в том числе заболеваниях нервной системы. Алкоголизм — глобальная социальная, медицинская и экономическая проблема современного общества. Длительное воздействие этанола оказывает прямое и опосредованное продуктами его метаболизма токсическое воздействие на организм человека, негативно влияя на функции основных адаптационных систем — нервной и иммунной. Способность биофлавоноидов к коррекции патологических нарушений при широком спектре хронических заболеваний с нейроиммунными механизмами патогенеза путем взаимодействия со специфическими рецепторами на поверхности клеток может обеспечить позитивный терапевтический эффект при алкоголизме.

Цель — оценка нейротропных и иммуномодулирующих свойств инновационной композиции биофлавоноидов на основе куркумина при длительном употреблении этанола.

Материалы и методы. Содержание биофлавоноидов в композиции измеряли в водно-органических экстрактах методом высокоэффективной жидкостной хроматографии. Длительно алкоголизированным мышам-самцам (CBA×C57Bl/6)F1, которые получали 10 % раствор этанола в качестве единственного источника жидкости на протяжении 6 мес., вводили композицию биофлавоноидов в течение 30 дней. Затем оценивали алкогольную мотивацию по потреблению 10 % раствора этанола в условиях свободного выбора с водой, а также параметры поведения в тесте «открытое поле», содержание цитокинов в структурах мозга (префронтальной коре, гипоталамусе, гиппокампе, стриатуме) методом иммуноферментного анализа, интенсивность клеточного (по выраженности реакции гиперчувствительности замедленного типа) и гуморального иммунного ответа (по относительному числу антителообразующих клеток селезенки).

Результаты. Было определено количественное содержание биофлавоноидов в композиции — куркумина, пиперина, изофлавоноидов сои, эпигаллокатехин-3-галлата, тритерпеновых сапонинов и β-каротина. Показано, что прием данной композиции на фоне длительного употребления этанола оказывал позитивный эффект, выражающийся в редактировании характерного для алкоголизма поведенческого фенотипа (снижении алкогольной мотивации, стимуляции локомоторной и исследовательской активности) на фоне снижения уровней ряда провоспалительных цитокинов в структурах мозга, наиболее выраженного в гиппокампе. После курсового приема композиции показана также стимуляция гуморального и клеточного иммунного ответа.

Выводы. Полученные данные позволяют рассматривать возможность применения инновационной композиции биофлавоноидов в качестве дополнительного иммуномодулирующего и нейротропного средства в терапии хронического алкоголизма.

Об авторах

Ирина Александровна Гольдина

Научно-исследовательский институт фундаментальной и клинической иммунологии

Автор, ответственный за переписку.
Email: igoldina@mail.ru
ORCID iD: 0000-0002-8246-9552
SPIN-код: 7537-8927
Россия, 630099, Новосибирск, ул. Ядринцевская, д. 14

Евгения Валерьевна Маркова

Научно-исследовательский институт фундаментальной и клинической иммунологии

Email: evgeniya_markova@mail.ru
ORCID iD: 0000-0002-9746-3751
SPIN-код: 8439-7310

д-р мед. наук

Россия, 630099, Новосибирск, ул. Ядринцевская, д. 14

Иван Владимирович Савкин

Научно-исследовательский институт фундаментальной и клинической иммунологии

Email: i.v.savkin2020@yandex.ru
ORCID iD: 0000-0002-1065-9234
SPIN-код: 8344-4247
Россия, 630099, Новосибирск, ул. Ядринцевская, д. 14

Ольга Сергеевна Аникеева

Научно-исследовательский институт фундаментальной и клинической иммунологии

Email: osa7.7@mail.ru
ORCID iD: 0009-0007-0421-7150
SPIN-код: 3490-2527

канд. мед. наук

Россия, 630099, Новосибирск, ул. Ядринцевская, д. 14

Евгений Владимирович Серенко

Научно-исследовательский институт фундаментальной и клинической иммунологии

Email: serenko.evgeniy@mail.ru
ORCID iD: 0000-0001-7807-3603
SPIN-код: 3197-7109
Россия, 630099, Новосибирск, ул. Ядринцевская, д. 14

Анна Владимировна Смык

Научно-исследовательский институт фундаментальной и клинической иммунологии

Email: anna-v-smyk@mail.ru
ORCID iD: 0009-0009-5582-6305
SPIN-код: 8582-0040
Россия, 630099, Новосибирск, ул. Ядринцевская, д. 14

Тамара Владимировна Шушпанова

Томский национальный исследовательский медицинский центр Российской академии наук

Email: shush59@mail.ru
ORCID iD: 0000-0002-9455-0358
SPIN-код: 9158-9235

канд. мед. наук

Россия, Томск

Мария Александровна Княжева

Научно-исследовательский институт фундаментальной и клинической иммунологии

Email: lira357knyazheva@yandex.ru
ORCID iD: 0000-0002-2537-8232
SPIN-код: 8913-3798

канд. биол. наук

Россия, 14 Yadrintsevskaya st., Novosibirsk, 630099

Список литературы

  1. Jett JD, Kordas G, Parent S, et al. Assessing clinically significant cognitive impairment using the nih toolbox in individuals with co-occurring serious mental illness and alcohol use disorder. J Addict Med. 2023;17(3):305–311. doi: 10.1097/ADM.0000000000001105
  2. Grant BF, Chou SP, Saha TD, et al. Prevalence of 12-month alcohol use, high-risk drinking, and DSM–IV alcohol use disorder in the United States, 2001–2002 to 2012–2013: results from the national epidemiologic survey on alcohol and related conditions. JAMA Psychiatry. 2017;74(9):911–923. doi: 10.1001/jamapsychiatry.2017.2161
  3. Bell RL, Hauser SR, McClintick J, et al. Ethanol-associated changes in glutamate reward neurocircuitry: a minireview of clinical and preclinical genetic findings. Prog Mol Biol Transl Sci. 2016;137:41–85. doi: 10.1016/bs.pmbts.2015.10.018
  4. Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the brain: neuronal molecular targets, synapses, and circuits. Neuron. 2017;96(6):1223–1238. doi: 10.1016/j.neuron.2017.10.032
  5. Ayrapetov MI, Eresko SO, Shamaeva SA, et al. Prolonged alcohol consumption influences microrna expression in the nucleus accumbens of the rat brain. Biomedical Chemistry. 2023;69(4):235–239. EDN: YSAZTO doi: 10.18097/PBMC20236904235
  6. Motaghinejad M, Motevalian M, Fatima S, et al. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats. Biomed Pharmacother. 2017;87:721–740. doi: 10.1016/j.biopha.2016.12.020
  7. Crews FT, Vetreno RP. Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology (Berl). 2016;233(9): 1543–1557. doi: 10.1007/s00213-015-3906-1
  8. Blednov YA, Benavidez JM, Black M, et al. Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines. Neuropharmacology. 2015;95:309–320. doi: 10.1016/j.neuropharm.2015.03.015
  9. Pascual M, Baliño P, Alfonso-Loeches S, et al. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun. 2011;25(Sl): S80–S91. doi: 10.1016/j.bbi.2011.02.012
  10. Nunes PT, Kipp BT, Reitz NL, Savage LM. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. Int Rev Neurobiol. 2019;148:101–168. doi: 10.1016/bs.irn.2019.09.002
  11. Zahr NM, Pfefferbaum A. Alcohol’s effects on the brain: neuroimaging results in humans and animal models. Alcohol Res. 2017;38(2):183–206.
  12. Zhang J., He Sh., Zhou W., Yuan B. Ethanol induces oxidative stress and apoptosis in human umbilical vein endothelial cells. Int J Clin Exp Med. 2016;9(2):4125–4130.
  13. Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav. 2019;177:34–60. doi: 10.1016/j.pbb.2018.12.007
  14. Sureshchandra S, Raus A, Jankeel A, et al. Dose-dependent effects of chronic alcohol drinking on peripheral immune responses. Sci Rep. 2019;9(1):7847. doi: 10.1038/s41598-019-44302-3
  15. Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol. 2008;214(2):231–241. doi: 10.1002/path.2276
  16. Ciabattini A, Pettini E, Andersen P, et al. Primary activation of antigen-specific naive CD4+ and CD8+ T cells following intranasal vaccination with recombinant bacteria. Infect Immun. 2008;76(12): 5817–5825. doi: 10.1128/IAI.00793-08
  17. Shi X, DeLucia AL, Bao J, Zhang P. Alcohol abuse and disorder of granulopoiesis. Pharmacol Ther. 2019;198:206–219. doi: 10.1016/j.pharmthera.2019.03.001
  18. Romeo HE, Tio DL, Taylor AN. Effects of glossopharyngeal nerve transection on central and peripheral cytokines and serum corticosterone induced by localized inflammation. J Neuroimmunol. 2003;136(1–2):104–111. doi: 10.1016/s0165–5728(03)00033-x
  19. Nevidimova TI, Vetlugina TP, Batukhtina EI, et al. Features of cytokine production in addiction. Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovanii. 2015;1(1):49–51. (In Russ.) EDN: TDWOUL
  20. Carlson ER, Guerin SP, Nixon K, Fonken LK. The neuroimmune system — Where aging and excess alcohol intersect. Alcohol. 2023;107:153–167. doi: 10.1016/j.alcohol.2022.08.009
  21. Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. Int Rev Neurobiol. 2022;161: 167–208. doi: 10.1016/bs.irn.2021.08.006
  22. Davinelli S, Medoro A, Ali S, et al. Dietary flavonoids and adult neurogenesis: potential implications for brain aging. Curr Neuropharmacol. 2023;21(3):651–668. doi: 10.2174/1570159X21666221031103909
  23. Yi YS. Regulatory roles of flavonoids in caspase-11 non-canonical inflammasome-mediated inflammatory responses and diseases. Int J Mol Sci. 2023;24(12):10402. doi: 10.3390/ijms241210402
  24. Markova EV, Goldina IA, Savkin IV. Bioflavonoids in neuroimmune pathology: mechanisms of action and therapeutic effects. Krasnoyarsk: Research and Innovation Center; 2019. 158 p. (In Russ.) EDN: YBNNZM doi: 10.12731/978-5-907208-15-5
  25. Goldina IA, Markova EV, Goldin BG, et al. Protective properties of turmeric extract in ethanol-induced behavioral disorders. Saratov Journal of Medical Scientific Research. 2017;13(1):131–135. EDN: YPYFXX
  26. Markova EV, Goldina IA, Goldin BG, et al. Turmeric extract in correction of nervous and immune systems functional activity parameters in experimental alcoholism. Medical Academic Journal. 2019;19(S):215–217. EDN: GCRYLB doi: 10.17816/MAJ191S1215–217
  27. Goldina IA, Markova EV, Savkin IV. Bioflavonoids efficiency in experimental alcoholism. Russian Immunological Journal. 2019;13(2): 212–214. EDN: ETMXJC doi: 10.31857/S102872210006461-2
  28. Patent RU No. 2654868/23.05.2024. Gaidul KV, Kornilov SI. Nutraceutical composition [cited: 2024 Oct 29] Available from: https://patents.google.com/patent/RU2654868C1/ru (In Russ.)
  29. Cheong WJ, Park MH, Kang GW. Determination of catechin compounds in Korean green tea infusions under various extraction conditions by high performance liquid chromatography. Bulletin of the Korean Chemical Society. 2005;26(5):747–754. doi: 10.5012/bkcs.2005.26.5.747
  30. Fedorova YS, Kulpin PV, Suslov NI. Study of the cardioprotective properties of biologically active substances Hedysarum alpinum L. Bulletin of science and education. 2018;(16–1):85–91. (In Russ.) EDN: PJISBX
  31. Ermakov AI, Arasimovich VV, Yarosh NP, et al. Methods of biochemical study of plants. Leningrad: Agropromizdat; 1987. 430 p. (In Russ.)
  32. Pavlova AB, Chirkina TF, Zolotareva AM. Biologically active food additive based on the woody greens of sea buckthorn. Chemistry of Plant Raw Material. 2001;(4):73–76. (In Russ.) EDN: HWIMCD
  33. Markova EV. Immunocompetent cells and regulation of behavioral reactions in norm and pathology. Krasnoyarsk: Research and Innovation Center. 2021. 184 p. (In Russ.) EDN: QMDWXP doi: 10.12731/978-5-907208-67-4
  34. Markova EV, Savkin IV, Kniazheva MA, Shushpanova TV. Anticonvulsant with immunomodulating properties in alcoholism therapy: experimental study. Siberian Herald of Psychiatry and Addiction Psychiatry. 2020;(1):14–22. EDN: IGJPCT doi: 10.26617/1810-3111-2020-1(106)-14-22
  35. Yoshikai Y, Miake S, Matsumoto T. Effect of stimulation and blockade of mononuclear phagocyte system on the delayed footpad reaction to SRBC in mice. Immunology. 1979;38(3):577–583.
  36. Kelley KW, Dantzer R. Alcoholism and inflammation: neuroimmunology of behavioral and mood disorders. Brain Behav Immun. 2011;25(Suppl 1):S13–S20. doi: 10.1016/j.bbi.2010.12.013
  37. Airapetov MI, Eresko SO, Bychkov ER, et al. Expression of Toll-like receptors in emotiogenic structures of rat brain is changed under longterm alcohol consumption and ethanol withdrawal. Medical Immunology (Russia). 2020;22(1):77–86. EDN: XDISIK doi: 10.15789/1563–0625-EOT-1836
  38. Pérez-Reytor D, Karahanian E. Alcohol use disorder, neuroinflammation, and intake of dietary fibers: a new approach for treatment. Am J Drug Alcohol Abuse. 2023;49(3):283–289. doi: 10.1080/00952990.2022.2114005
  39. Wang H, Zhao T, Liu Z, et al. The neuromodulatory effects of flavonoids and gut Microbiota through the gut-brain axis. Front Cell Infect Microbiol. 2023;13:1197646. doi: 10.3389/fcimb.2023.1197646
  40. Gazatova ND, Yurova KA, Gavrilov DV, et al. Features of cellular immunity and regeneration in alcoholic hepatic fibrosis. Bulletin of Siberian Medicine. 2019;18(1):175–189. EDN: ZHBGKD doi: 10.20538/1682-0363-2019-1-175-189
  41. Moukham H, Lambiase A, Barone GD, et al. Exploiting natural niches with neuroprotective properties: a comprehensive review. Nutrients. 2024;16(9):1298. doi: 10.3390/nu16091298
  42. Lamanna-Rama N, Romero-Miguel D, Desco M, Soto-Montenegro ML. An update on the exploratory use of curcumin in neuropsychiatric disorders. Antioxidants (Basel). 2022;11(2):353. doi: 10.3390/antiox11020353
  43. Sohn SI, Priya A, Balasubramaniam B, et al. Biomedical applications and bioavailability of curcumin-an updated overview. Pharmaceutics. 2021;13(12):2102. doi: 10.3390/pharmaceutics13122102
  44. Esmaealzadeh N, Miri MS, Mavaddat H, et al. The regulating effect of curcumin on NF-κB pathway in neurodegenerative diseases: a review of the underlying mechanisms. Inflammopharmacology. 2024;32(4):2125–2151. doi: 10.1007/s10787-024-01492-1
  45. Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets. 2011;12(3):332–347. doi: 10.2174/138945011794815356
  46. Zhou J, Wu N, Lin L. Curcumin suppresses apoptosis and inflammation in hypoxia/reperfusion-exposed neurons via wnt signaling pathway. Med Sci Monit. 2020;26:e920445. doi: 10.12659/MSM.920445
  47. Reddy PH, Manczak M, Yin X, et al. Protective effects of Indian Spice curcumin against amyloid-β in Alzheimer’s disease. J Alzheimers Dis. 2018;61(3):843–866. doi: 10.3233/JAD-170512
  48. Hu S, Maiti P, Ma Q, et al. Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother. 2015;15(6): 629–637. doi: 10.1586/14737175.2015.1044981
  49. He HJ, Xiong X, Zhou S, et al. Neuroprotective effects of curcumin via autophagy induction in 6-hydroxydopamine Parkinson’s models. Neurochem Int. 2022;155:105297. doi: 10.1016/j.neuint.2022.105297
  50. Sanmukhani J, Anovadiya A, Tripathi CB. Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study. Acta Pol Pharm. 2011;68(5):769–775.
  51. Kaufmann FN, Gazal M, Bastos CR, et al. Curcumin in depressive disorders: An overview of potential mechanisms, preclinical and clinical findings. Eur J Pharmacol. 2016;784:192–198. doi: 10.1016/j.ejphar.2016.05.026
  52. Bava SV, Puliyappadamba VT, Deepti A, et al. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization J Biol Chem. 2005;280(8): 6301–6308. doi: 10.1074/jbc.M410647200
  53. Franco-Robles E, Campos-Cervantes A, Murillo-Ortiz BO, et al. Effects of curcumin on brain-derived neurotrophic factor levels and oxidative damage in obesity and diabetes. Appl Physiol Nutr Metab. 2014;39(2):211–218. doi: 10.1139/apnm-2013-0133
  54. Fusar-Poli L, Vozza L, Gabbiadini A, et al. Curcumin for depression: a meta-analysis. Crit Rev Food Sci Nutr. 2020;60(15): 2643–2653. doi: 10.1080/10408398.2019.1653260
  55. Bao S, Zhang Y, Ye J, et al. Self-assembled micelles enhance the oral delivery of curcumin for the management of alcohol-induced tissue injury. Pharm Dev Technol. 2021;26(8):880–889. doi: 10.1080/10837450.2021.1950185
  56. Kim MA, Kim MJ. Isoflavone profiles and antioxidant properties in different parts of soybean sprout. J Food Sci. 2020;85(3): 689–695. doi: 10.1111/1750-3841.15058
  57. Danesi F, Philpott M, Huebner C, et al. Food-derived bioactives as potential regulators of the IL-12/IL-23 pathway implicated in inflammatory bowel diseases. Mutat Res. 2010;690(1–2):139–144. doi: 10.1016/j.mrfmmm.2010.01.001
  58. Juang YP, Liang PH. Biological and pharmacological effects of synthetic saponins. Molecules. 2020;25(21):4974. doi: 10.3390/molecules25214974
  59. Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol. 2017;174(11):1290–1324. doi: 10.1111/bph.13625

© Эко-Вектор, 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».