Neurotropic and immunomodulatory properties of a novel bioflavonoid composition
- Authors: Goldina I.A.1, Markova E.V.1, Savkin I.V.1, Anikeeva O.S.1, Serenko E.V.1, Smyk A.V.1, Shushpanova T.V.2, Knyazheva M.A.1
-
Affiliations:
- Sechenov Research Institute of Fundamental and Clinical Immunology
- Tomsk National Research Medical Center, Russian Academy of Science
- Issue: Vol 22, No 4 (2024)
- Pages: 361-376
- Section: Original study articles
- URL: https://journals.rcsi.science/RCF/article/view/283520
- DOI: https://doi.org/10.17816/RCF633855
- ID: 283520
Cite item
Abstract
BACKGROUND: Flavonoids, a class of plant polyphenols, exhibit a wide range of biological (neuro- and immunotropic, antioxidant, anti-inflammatory, epigenome-modulating) properties involved in the mechanisms of management in various pathological processes, including nervous system diseases. Alcoholism is a pervasive social, medical, and economic issue of a modern society. Prolonged exposure to ethanol has a direct and mediated toxic effect on the human body through its metabolites negatively affecting nervous and immune systems that play a major role in adaptation. The ability of bioflavonoids to manage pathological disorders in a wide range of chronic diseases with neuroimmune pathogenesis mechanisms by interacting with specific cell surface receptors can provide therapeutic benefits in alcoholism.
AIM: To assess neurotropic and immunomodulatory properties of a novel curcumin-based bioflavonoid composition during prolonged ethanol consumption.
MATERIALS AND METHODS: The content of bioflavonoids in the composition was measured in aqueous-organic extracts using high-performance liquid chromatography (HPLC). Chronically alcoholized male (CBA×C57Bl/6)F1 mice who received a 10% ethanol solution as the sole source of fluid during six months were administered a bioflavonoid composition during 30 days. Subsequent studies assessed alcohol motivation by consumption of a 10% ethanol solution in free choice with water, as well as behavioral parameters in the open field test, cytokine content in the brain structures (prefrontal cortex, hypothalamus, hippocampus, striatum) using enzyme immunoassay. The intensity of the cellular and humoral immune response was determined by the severity of the delayed-type hypersensitivity response and relative number of splenic antibody-forming cells, respectively.
RESULTS: The quantitative content of bioflavonoids was determined in the composition consisting of curcumin, piperine, soybean isoflavonoids, epigallocatechin-3-gallate, triterpene saponins, and β-carotene. Taking this composition in the context of prolonged ethanol consumption was shown to have a positive effect expressed in correcting the alcoholism-related behavioral phenotype (reduced alcohol motivation, stimulation of locomotor and exploratory activity), accompanied by decreased levels of certain proinflammatory cytokines in the brain structures (most pronounced in the hippocampus). Stimulation of the humoral and cellular immune response was also demonstrated after a course of treatment with the described composition.
CONCLUSIONS: The data support the use of the novel bioflavonoid composition as an additional immunomodulatory and neurotropic agent in the treatment of chronic alcoholism.
Full Text
##article.viewOnOriginalSite##About the authors
Irina A. Goldina
Sechenov Research Institute of Fundamental and Clinical Immunology
Author for correspondence.
Email: igoldina@mail.ru
ORCID iD: 0000-0002-8246-9552
SPIN-code: 7537-8927
Russian Federation, 14 Yadrintsevskaya st., Novosibirsk, 630099
Evgeniya V. Markova
Sechenov Research Institute of Fundamental and Clinical Immunology
Email: evgeniya_markova@mail.ru
ORCID iD: 0000-0002-9746-3751
SPIN-code: 8439-7310
MD, Dr. Sci. (Medicine)
Russian Federation, 14 Yadrintsevskaya st., Novosibirsk, 630099Ivan V. Savkin
Sechenov Research Institute of Fundamental and Clinical Immunology
Email: i.v.savkin2020@yandex.ru
ORCID iD: 0000-0002-1065-9234
SPIN-code: 8344-4247
Russian Federation, 14 Yadrintsevskaya st., Novosibirsk, 630099
Olga S. Anikeeva
Sechenov Research Institute of Fundamental and Clinical Immunology
Email: osa7.7@mail.ru
ORCID iD: 0009-0007-0421-7150
SPIN-code: 3490-2527
MD, Cand. Sci. (Medicine)
Russian Federation, 14 Yadrintsevskaya st., Novosibirsk, 630099Evgeniy V. Serenko
Sechenov Research Institute of Fundamental and Clinical Immunology
Email: serenko.evgeniy@mail.ru
ORCID iD: 0000-0001-7807-3603
SPIN-code: 3197-7109
Russian Federation, 14 Yadrintsevskaya st., Novosibirsk, 630099
Anna V. Smyk
Sechenov Research Institute of Fundamental and Clinical Immunology
Email: anna-v-smyk@mail.ru
ORCID iD: 0009-0009-5582-6305
SPIN-code: 8582-0040
Russian Federation, 14 Yadrintsevskaya st., Novosibirsk, 630099
Tamara V. Shushpanova
Tomsk National Research Medical Center, Russian Academy of Science
Email: shush59@mail.ru
ORCID iD: 0000-0002-9455-0358
SPIN-code: 9158-9235
MD, Cand. Sci. (Medicine)
Russian Federation, TomskMariya A. Knyazheva
Sechenov Research Institute of Fundamental and Clinical Immunology
Email: lira357knyazheva@yandex.ru
ORCID iD: 0000-0002-2537-8232
SPIN-code: 8913-3798
Cand. Sci. (Biology)
Russian Federation, 630099, Новосибирск, ул. Ядринцевская, д. 14References
- Jett JD, Kordas G, Parent S, et al. Assessing clinically significant cognitive impairment using the nih toolbox in individuals with co-occurring serious mental illness and alcohol use disorder. J Addict Med. 2023;17(3):305–311. doi: 10.1097/ADM.0000000000001105
- Grant BF, Chou SP, Saha TD, et al. Prevalence of 12-month alcohol use, high-risk drinking, and DSM–IV alcohol use disorder in the United States, 2001–2002 to 2012–2013: results from the national epidemiologic survey on alcohol and related conditions. JAMA Psychiatry. 2017;74(9):911–923. doi: 10.1001/jamapsychiatry.2017.2161
- Bell RL, Hauser SR, McClintick J, et al. Ethanol-associated changes in glutamate reward neurocircuitry: a minireview of clinical and preclinical genetic findings. Prog Mol Biol Transl Sci. 2016;137:41–85. doi: 10.1016/bs.pmbts.2015.10.018
- Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the brain: neuronal molecular targets, synapses, and circuits. Neuron. 2017;96(6):1223–1238. doi: 10.1016/j.neuron.2017.10.032
- Ayrapetov MI, Eresko SO, Shamaeva SA, et al. Prolonged alcohol consumption influences microrna expression in the nucleus accumbens of the rat brain. Biomedical Chemistry. 2023;69(4):235–239. EDN: YSAZTO doi: 10.18097/PBMC20236904235
- Motaghinejad M, Motevalian M, Fatima S, et al. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats. Biomed Pharmacother. 2017;87:721–740. doi: 10.1016/j.biopha.2016.12.020
- Crews FT, Vetreno RP. Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology (Berl). 2016;233(9): 1543–1557. doi: 10.1007/s00213-015-3906-1
- Blednov YA, Benavidez JM, Black M, et al. Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines. Neuropharmacology. 2015;95:309–320. doi: 10.1016/j.neuropharm.2015.03.015
- Pascual M, Baliño P, Alfonso-Loeches S, et al. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun. 2011;25(Sl): S80–S91. doi: 10.1016/j.bbi.2011.02.012
- Nunes PT, Kipp BT, Reitz NL, Savage LM. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. Int Rev Neurobiol. 2019;148:101–168. doi: 10.1016/bs.irn.2019.09.002
- Zahr NM, Pfefferbaum A. Alcohol’s effects on the brain: neuroimaging results in humans and animal models. Alcohol Res. 2017;38(2):183–206.
- Zhang J., He Sh., Zhou W., Yuan B. Ethanol induces oxidative stress and apoptosis in human umbilical vein endothelial cells. Int J Clin Exp Med. 2016;9(2):4125–4130.
- Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav. 2019;177:34–60. doi: 10.1016/j.pbb.2018.12.007
- Sureshchandra S, Raus A, Jankeel A, et al. Dose-dependent effects of chronic alcohol drinking on peripheral immune responses. Sci Rep. 2019;9(1):7847. doi: 10.1038/s41598-019-44302-3
- Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol. 2008;214(2):231–241. doi: 10.1002/path.2276
- Ciabattini A, Pettini E, Andersen P, et al. Primary activation of antigen-specific naive CD4+ and CD8+ T cells following intranasal vaccination with recombinant bacteria. Infect Immun. 2008;76(12): 5817–5825. doi: 10.1128/IAI.00793-08
- Shi X, DeLucia AL, Bao J, Zhang P. Alcohol abuse and disorder of granulopoiesis. Pharmacol Ther. 2019;198:206–219. doi: 10.1016/j.pharmthera.2019.03.001
- Romeo HE, Tio DL, Taylor AN. Effects of glossopharyngeal nerve transection on central and peripheral cytokines and serum corticosterone induced by localized inflammation. J Neuroimmunol. 2003;136(1–2):104–111. doi: 10.1016/s0165–5728(03)00033-x
- Nevidimova TI, Vetlugina TP, Batukhtina EI, et al. Features of cytokine production in addiction. Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovanii. 2015;1(1):49–51. (In Russ.) EDN: TDWOUL
- Carlson ER, Guerin SP, Nixon K, Fonken LK. The neuroimmune system — Where aging and excess alcohol intersect. Alcohol. 2023;107:153–167. doi: 10.1016/j.alcohol.2022.08.009
- Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. Int Rev Neurobiol. 2022;161: 167–208. doi: 10.1016/bs.irn.2021.08.006
- Davinelli S, Medoro A, Ali S, et al. Dietary flavonoids and adult neurogenesis: potential implications for brain aging. Curr Neuropharmacol. 2023;21(3):651–668. doi: 10.2174/1570159X21666221031103909
- Yi YS. Regulatory roles of flavonoids in caspase-11 non-canonical inflammasome-mediated inflammatory responses and diseases. Int J Mol Sci. 2023;24(12):10402. doi: 10.3390/ijms241210402
- Markova EV, Goldina IA, Savkin IV. Bioflavonoids in neuroimmune pathology: mechanisms of action and therapeutic effects. Krasnoyarsk: Research and Innovation Center; 2019. 158 p. (In Russ.) EDN: YBNNZM doi: 10.12731/978-5-907208-15-5
- Goldina IA, Markova EV, Goldin BG, et al. Protective properties of turmeric extract in ethanol-induced behavioral disorders. Saratov Journal of Medical Scientific Research. 2017;13(1):131–135. EDN: YPYFXX
- Markova EV, Goldina IA, Goldin BG, et al. Turmeric extract in correction of nervous and immune systems functional activity parameters in experimental alcoholism. Medical Academic Journal. 2019;19(S):215–217. EDN: GCRYLB doi: 10.17816/MAJ191S1215–217
- Goldina IA, Markova EV, Savkin IV. Bioflavonoids efficiency in experimental alcoholism. Russian Immunological Journal. 2019;13(2): 212–214. EDN: ETMXJC doi: 10.31857/S102872210006461-2
- Patent RU No. 2654868/23.05.2024. Gaidul KV, Kornilov SI. Nutraceutical composition [cited: 2024 Oct 29] Available from: https://patents.google.com/patent/RU2654868C1/ru (In Russ.)
- Cheong WJ, Park MH, Kang GW. Determination of catechin compounds in Korean green tea infusions under various extraction conditions by high performance liquid chromatography. Bulletin of the Korean Chemical Society. 2005;26(5):747–754. doi: 10.5012/bkcs.2005.26.5.747
- Fedorova YS, Kulpin PV, Suslov NI. Study of the cardioprotective properties of biologically active substances Hedysarum alpinum L. Bulletin of science and education. 2018;(16–1):85–91. (In Russ.) EDN: PJISBX
- Ermakov AI, Arasimovich VV, Yarosh NP, et al. Methods of biochemical study of plants. Leningrad: Agropromizdat; 1987. 430 p. (In Russ.)
- Pavlova AB, Chirkina TF, Zolotareva AM. Biologically active food additive based on the woody greens of sea buckthorn. Chemistry of Plant Raw Material. 2001;(4):73–76. (In Russ.) EDN: HWIMCD
- Markova EV. Immunocompetent cells and regulation of behavioral reactions in norm and pathology. Krasnoyarsk: Research and Innovation Center. 2021. 184 p. (In Russ.) EDN: QMDWXP doi: 10.12731/978-5-907208-67-4
- Markova EV, Savkin IV, Kniazheva MA, Shushpanova TV. Anticonvulsant with immunomodulating properties in alcoholism therapy: experimental study. Siberian Herald of Psychiatry and Addiction Psychiatry. 2020;(1):14–22. EDN: IGJPCT doi: 10.26617/1810-3111-2020-1(106)-14-22
- Yoshikai Y, Miake S, Matsumoto T. Effect of stimulation and blockade of mononuclear phagocyte system on the delayed footpad reaction to SRBC in mice. Immunology. 1979;38(3):577–583.
- Kelley KW, Dantzer R. Alcoholism and inflammation: neuroimmunology of behavioral and mood disorders. Brain Behav Immun. 2011;25(Suppl 1):S13–S20. doi: 10.1016/j.bbi.2010.12.013
- Airapetov MI, Eresko SO, Bychkov ER, et al. Expression of Toll-like receptors in emotiogenic structures of rat brain is changed under longterm alcohol consumption and ethanol withdrawal. Medical Immunology (Russia). 2020;22(1):77–86. EDN: XDISIK doi: 10.15789/1563–0625-EOT-1836
- Pérez-Reytor D, Karahanian E. Alcohol use disorder, neuroinflammation, and intake of dietary fibers: a new approach for treatment. Am J Drug Alcohol Abuse. 2023;49(3):283–289. doi: 10.1080/00952990.2022.2114005
- Wang H, Zhao T, Liu Z, et al. The neuromodulatory effects of flavonoids and gut Microbiota through the gut-brain axis. Front Cell Infect Microbiol. 2023;13:1197646. doi: 10.3389/fcimb.2023.1197646
- Gazatova ND, Yurova KA, Gavrilov DV, et al. Features of cellular immunity and regeneration in alcoholic hepatic fibrosis. Bulletin of Siberian Medicine. 2019;18(1):175–189. EDN: ZHBGKD doi: 10.20538/1682-0363-2019-1-175-189
- Moukham H, Lambiase A, Barone GD, et al. Exploiting natural niches with neuroprotective properties: a comprehensive review. Nutrients. 2024;16(9):1298. doi: 10.3390/nu16091298
- Lamanna-Rama N, Romero-Miguel D, Desco M, Soto-Montenegro ML. An update on the exploratory use of curcumin in neuropsychiatric disorders. Antioxidants (Basel). 2022;11(2):353. doi: 10.3390/antiox11020353
- Sohn SI, Priya A, Balasubramaniam B, et al. Biomedical applications and bioavailability of curcumin-an updated overview. Pharmaceutics. 2021;13(12):2102. doi: 10.3390/pharmaceutics13122102
- Esmaealzadeh N, Miri MS, Mavaddat H, et al. The regulating effect of curcumin on NF-κB pathway in neurodegenerative diseases: a review of the underlying mechanisms. Inflammopharmacology. 2024;32(4):2125–2151. doi: 10.1007/s10787-024-01492-1
- Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets. 2011;12(3):332–347. doi: 10.2174/138945011794815356
- Zhou J, Wu N, Lin L. Curcumin suppresses apoptosis and inflammation in hypoxia/reperfusion-exposed neurons via wnt signaling pathway. Med Sci Monit. 2020;26:e920445. doi: 10.12659/MSM.920445
- Reddy PH, Manczak M, Yin X, et al. Protective effects of Indian Spice curcumin against amyloid-β in Alzheimer’s disease. J Alzheimers Dis. 2018;61(3):843–866. doi: 10.3233/JAD-170512
- Hu S, Maiti P, Ma Q, et al. Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother. 2015;15(6): 629–637. doi: 10.1586/14737175.2015.1044981
- He HJ, Xiong X, Zhou S, et al. Neuroprotective effects of curcumin via autophagy induction in 6-hydroxydopamine Parkinson’s models. Neurochem Int. 2022;155:105297. doi: 10.1016/j.neuint.2022.105297
- Sanmukhani J, Anovadiya A, Tripathi CB. Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study. Acta Pol Pharm. 2011;68(5):769–775.
- Kaufmann FN, Gazal M, Bastos CR, et al. Curcumin in depressive disorders: An overview of potential mechanisms, preclinical and clinical findings. Eur J Pharmacol. 2016;784:192–198. doi: 10.1016/j.ejphar.2016.05.026
- Bava SV, Puliyappadamba VT, Deepti A, et al. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization J Biol Chem. 2005;280(8): 6301–6308. doi: 10.1074/jbc.M410647200
- Franco-Robles E, Campos-Cervantes A, Murillo-Ortiz BO, et al. Effects of curcumin on brain-derived neurotrophic factor levels and oxidative damage in obesity and diabetes. Appl Physiol Nutr Metab. 2014;39(2):211–218. doi: 10.1139/apnm-2013-0133
- Fusar-Poli L, Vozza L, Gabbiadini A, et al. Curcumin for depression: a meta-analysis. Crit Rev Food Sci Nutr. 2020;60(15): 2643–2653. doi: 10.1080/10408398.2019.1653260
- Bao S, Zhang Y, Ye J, et al. Self-assembled micelles enhance the oral delivery of curcumin for the management of alcohol-induced tissue injury. Pharm Dev Technol. 2021;26(8):880–889. doi: 10.1080/10837450.2021.1950185
- Kim MA, Kim MJ. Isoflavone profiles and antioxidant properties in different parts of soybean sprout. J Food Sci. 2020;85(3): 689–695. doi: 10.1111/1750-3841.15058
- Danesi F, Philpott M, Huebner C, et al. Food-derived bioactives as potential regulators of the IL-12/IL-23 pathway implicated in inflammatory bowel diseases. Mutat Res. 2010;690(1–2):139–144. doi: 10.1016/j.mrfmmm.2010.01.001
- Juang YP, Liang PH. Biological and pharmacological effects of synthetic saponins. Molecules. 2020;25(21):4974. doi: 10.3390/molecules25214974
- Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol. 2017;174(11):1290–1324. doi: 10.1111/bph.13625
