Nitric oxide and hypoxia at adaptation to muscular work (brief review)

Cover Page

Cite item

Full Text

Abstract

The The last two decades there has been a growing interest in the nitric oxide (NO) function in the body of a healthy person. In the study, two very specific problems are discussed: a) the NO involvement in mechanisms of adaptation at muscular work under hypoxia conditions, and b) the inorganic nitrate supplementation in athlete’s diet with the aim of sports performance improvement. The reorganizations that occur in the heart vasculature and in skeletal muscle for providing muscle work under hypoxia conditions examined. The named problems are particularly relevant in contemporary sports in which the adding of hypoxic exposure on a body of training persons as well as the inorganic nitrate in sports nutrition application as added means to special performance improvement. Raise the problem of the hypoxia and inorganic nitrate mutual exploitation in the training process.

About the authors

Alexander S Radchenko

Saint Petersburg University of the Humanities and Social Sciences

Email: radtcha@mail.ru
Dr. Biol. Sci., Professor, Dept. of Physical Culture

References

  1. Радченко А. С. Эффективность адаптивных реакций организма человека при циклической мышечной аэробной работе: оценка, прогнозирование, управление адаптацией. - СПб.: Изд-во СПбГХФА, 2002. - 80 с. [Radchenko AS. The efficacy of the human adaptive reactions in cyclic muscle aerobic work: assessment, prognosis, regulation of adaptation. Saint Petersburg: SPbSCPA; 2002. 80 p. (In Russ).]
  2. Радченко А. С. Применение естественной и искусственной гипоксии в спортивной тренировке // Обзоры по клинич. фармакол. лекарств. терап. - 2013. - Т. 11. - № 1. - С. 26-32. [Radchenko AS. The usage of natural and artificial hypoxia in sport training. Obzory po klinicheskoii farmakologii i lekarstvennoi terapii. 2013;11 (1):26-32. (In Russ).]
  3. Радченко А. С., Борилкевич В. Е., Зорин А. И., Миролюбов А. В. Адаптивные реакции у спортсменов при мышечной работе аэробного характера // Физиол. чел. - 2001. - Т. 27. - № 2. - С. 122-130. [Radchenko AS, Borilkevich BE, Zorin AI, Mirolyubov A. V. Adaptive reactions in sportsmen under muscle work of aerobic character. Fiziologiya cheloveka. 2001;27(2):122-130. (In Russ).]
  4. Радченко А. С., Борисенко Н. С., Калиниченко А. Н., и др. Взаимодействие пред- и постнагрузки сердца и RR-интервалов при нормобарическом жестком гипоксическом воздействии у молодых здоровых лиц // Обзоры по клин. фармакол. лекарств. терап. - 2013. - Т. 11. - № 3. - С. 40-49. [Radchenko AS, Borisenko NS, Kalinichenko AN, et al. Interactions of pre- and postloading of the heart and RR intervals in normobaric rigid hypoxic exposure in young healthy persons. Obzory po klinicheskoii farmakologii i lekarstvennoi terapii. 2013;11 (3):40-49. (In Russ).]
  5. Abu-Soud HM, Rousseau DL, Stuehr DJ. Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension. J Biol Chem. 1996;271:32515-32518. doi: 10.1074/jbc.271.51.32515.
  6. Abu-Soud HM, Wu C, Ghosh DK, Stuehr DJ. Stopped-flow analysis of CO and NO binding to inducible nitric oxide synthase. Biochemistry. 1998;37:3777-3786.
  7. Åstrand PO, Rodahl K, Dahl HA, Strömme SB. Textbook of Work Physiology: Physiological Bases of Exercise, 2003. 4th ed. (Stockholm: Human Kinetics).
  8. Bailey SJ, Winyard P, Vanhatalo A, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107 (4):1144-1155.
  9. Bailey SJ, Fulford J, Vanhatalo A, e t al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol. 2010;109(1):135-148. doi: 10.1152/japplphysiol.00046.2010.
  10. Bailey JC, Feelisch M, Horowitz JD et al. Pharmacology and therapeutic role of inorganic nitrite and nitrate in vasodilatation. Pharmacol Therapeutics. 2014;144 (3):303-320. doi: 10.1016/j.pharmthera.2014.06.009.
  11. Balon TW, Nadler JL. Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol. 1997;82:359-363.
  12. Benjamin N, O'Driscoll F, Dougall H, et al. Stomach NO synthesis. Nature. 1994;368:502. doi: 10.1038/368502a0.
  13. Bescos R, Rodriguez FA, Iglesias X, et al. Acute administration of inorganic nitrate reduces VO2 peak in endurance athlete. Med Sci Sports Exerc. 2011;43:1979-1986. doi: 10.1249/MSS.0b013e318217d439.
  14. Bescos R, Ferrer-Roca V, Galilea PA, et al. Sodium nitrate supplementation does not enhance performance of endurance athletes. Med Sci Sports Exerc. 2012;44(12):2400-2409. doi: 10.1249/MSS.0b013e3182687e5c.
  15. Bond H, Morton L, Braakhuis AJ. Dietary nitrate supplementation improves rowing performance in well-trained rowers. Int J Sport Nutr Exerc Metab. 2012;22(4):251-259.
  16. Boorsma RK, Whitfield J, Spriet LL. Beetroot juice supplementation does not improve performance in elite 1500-m runners. Med Sci Sports Exerc. 2014. [e-prepublication] doi: 10.1249/MSS.0000000000000364.
  17. Børsheim E, Bahr R. Effect of exercise intensity, duration and mode on post exercise oxygen consumption. Sports Medicine. 2003;33(14):1037-1060. doi: 10.2165/00007256-200333140-00002.
  18. Brand MD, Chief LF, Ainscow EK, et al. The causes and functions of mitochondrial proton leak. Biochim. Biophys. Acta. 1994;1187(2):132-139. doi: 10.1016/0005-2728(94)90099-X.
  19. Brand MD, Pakay JL, Ocloo A, et al. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J. 2005;392:353-362. doi: 10.1042/BJ20050890.
  20. Breese BC, McNarry MA, Marwood S, et al. Beetroot juice supplementation speeds O2 uptake kinetics and improves exercise tolerance during severe-intensity exercise initiated from an elevated metabolic rate. Amer J Physiol. Regulatory, Integrative and Comparative Physiol; 2013;305: R1441-R1450. doi: 10.1152/ajpregu.00295.2013.
  21. Burnley M, Jones AM. Oxygen uptake kinetics as a determinant of sports performance. Eur J Sport Sci. 2007;7(2):63-79. doi: 10.1080/17461390701456148.
  22. Cappani C, Squarzoni S, Petrini S, et al. Increase of neuronal nitric oxide synthase in rat skeletal muscle during ageing. Biochem Biophys Res Commun. 1998;245:216-219. doi: 10.1006/bbrc.1998.8404.
  23. Cermak NM, Gibala MJ, van Loon LJ. Nitrate supplementation's improvement of 10-km time-trial performance in trained cyclists. Int J Sport Nutr Exerc Metab. 2012;22 (1):64-71.
  24. Cermak NM, Res P, Stinkens R, et al. No improvement in endurance performance following a single dose of beetroot juice. Int J Sport Nut Exerc Metab. 2012;22 (6):470-478.
  25. Christensen PM, Nyberg M, Bangsbo J. Influence of nitrate supplementation on VO2 kinetics and endurance of elite cyclists. Scand J Med Sci in Sports. 2013;23(1): E21-E31. doi: 10.1111/sms.12005.
  26. Cosby K, Partovi KS, Crawford JH, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498-1505. doi: 10.1038/nm954.
  27. Day JR, Rossiter HB, Coats, et al. The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol. 2003;95:1901-1907. doi: 10.1152/japplphysiol.00024.2003.
  28. Deussen A, Brand M, Pexa A, Weichel J. Metabolic coronary flow regulation - Current concepts. Bas Res Cardiol. 2006;101(6):453-464. doi: 10.1007/s00395-006-0621-4.
  29. Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399:601-605. doi: 10.1038/21224.
  30. Droma Y, Hanaoka, Ota M, et al. Positive Association of the Endothelial Nitric Oxide Synthase Gene Polymorphisms With High-Altitude Pulmonary Edema. Circulation. 2002;106(7):826-830. doi: 10.1161/01.CIR.0000024409.30143.70.
  31. Duncker DJ, Bache RJ. Regulation of Coronary Blood Flow During Exercise. Physiol Rev. 2008;88:1009-1086. doi: 10.1152/physrev.00045.2006.
  32. Duplain H, Sartori C, Lepori M, et al. Exhaled nitric oxide in high-altitude pulmonary edema: role in the regulation of pulmonary vascular tone and evidence for a role against inflammation. Amer J Respir Crit Care Med. 2000;162(1):221-224. doi: 10.1164/ajrccm.162.1.9908039.
  33. Ellsworth M L, Forrester T, Ellis CG, Dietrich HH. The erythrocyte as a regulator of vascular tone. Amer J Physiol. 1995;269: H2155-H2161.
  34. Faiss R, Girard O, Millet G. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013;47: i45-i50. doi: 10.1136/bjsports-2013-092741.
  35. Fulton D, Gratton JP, McCabe TJ, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase. Nature. 1999;399:597-601. doi: 10.1038/21218.
  36. Gladwin MT, Schechter AN, Kim-Shapiro DB, et al. The emerging biology of the nitrite anion. Nat Chem Biol. 2005;1:308-314. doi: 10.1038/nchembio1105-308.
  37. Gladwin MT, Raat NJH, Shiva S, et al. Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Amer J Physiol. Heart Circ Physiol. 2006;291(5):H2026-H2035. doi: 10.1152/ajpheart.00407.2006.
  38. Gladwin MT. Evidence mounts that nitrite contributes to hypoxic vasodilation in the human circulation. Circulation. 2008;117:594-597. doi: 10.1161/CIRCULATIONAHA.107.753897.
  39. González-Alonso J. ATP as a mediator of erythrocyte-dependent regulation of skeletal muscle blood flow and oxygen delivery in humans. J Physiol. 2012;590:5001-5013. doi: 10.1113/jphysiol.2012.235002.
  40. González-Alonso J, Olsen DB, Saltin B. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP. Circ Res. 2002;91:1046-1055. doi: 10.1161/01.RES.0000044939.73286.E2.
  41. Gonzalez-Alonso J, Mortensen SP, Dawson EA, et al. Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: role of erythrocyte count and oxygenation state of haemoglobin. J Physiol. 2006;572:295-305. doi: 10.1113/jphysiol.2005.101121.
  42. Haider G, Folland JP. Nitrate Supplementation Enhances the Contractile Properties of Human Skeletal Muscle. Med Sci Sports Exer. 2014;46(12):2234-2243. doi: 10.1249/MSS.0000000000000351.
  43. Hawkins MN, Raven PB, Snell PG, et al. Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Med Sci Sports Exer. 2007;39:103-107. doi: 10.1249/01.mss.0000241641.75101.64.
  44. Hellsten Y, Nyberg M, Mortensen SP. Contribution of intravascular versus interstitial purines and nitric oxide in the regulation of exercise hyperaemia in humans. J Physiol. 2012;590:5015-5023. doi: 10.1113/jphysiol.2012.234963.
  45. Hendgen-Cotta UB, Merx MW, Shiva S, et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci USA. 2008;105(29):10256-10261. doi: 10.1073/pnas.0801336105.
  46. Hendgen-Cotta UB, Kelm M, Rassaf T. Myoglobin's novel role in nitrite-induced hypoxic vasodilation. Trands Cardiovasc Med. 2014;24(2):69-74. doi: 10.1016/j.tcm.2013.06.006.
  47. Hofmann H, Schmidt HH. Thiol dependence of nitric oxide synthase. Biochemistry. 1995;34:13443-13452. doi: 10.1021/bi00041a023.
  48. Hoon MW, Jones AM, Johnson NA, et al. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2,000-m rowing performance in trained athletes. Int J Sports Physiol. Perform. 2014;9(4):615-620. doi: 10.1123/IJSPP.2013-0207.
  49. Hoon MW, Hopkins WG, Jones AM, et al. Nitrate supplementation and high-intensity performance in competitive cyclists. Appl Physiol Nutrit Metab. 2014;39(9):1043-1049. doi: 10.1139/apnm-2013-0574.
  50. Isbell TS, Gladwin MT, Patel RP. Hemoglobin oxygen fractional saturation regulates nitrite-dependent vasodilation of aortic ring bioassays. Amer J Physiol Heart Circ Physiol. 2007;293: H2565-H2572. doi: 10.1152/ajpheart.00759.2007.
  51. Jensen FB. The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow. J Exp Biol. 2009;212:3387-3393. doi: 10.1242/jeb.023697.
  52. Jia L, Bonaventura C, Bonaventura J, Stamler J S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996;380:221-226. doi: 10.1038/380221a0.
  53. Jones AM. Dietary nitrate supplementation and exercise performance. Sports Med.(Auckland, N. Z.). 2014;44:35-45. doi: 10.1007/s40279-014-0149-y.
  54. Lansley K, Winyard PG, Bailey SJ, et al. Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sports Exerc. 2011;43(6):1125-1131. doi: 10.1249/MSS.0b013e31821597b4.
  55. Lansley KE, Winyard PG, Fulford J, et al. Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J Appl Physiol. 2011;110(3):591-600. doi: 10.1152/japplphysiol.01070.2010.
  56. Larsen FJ, Ekblom B, Sahlin K, et al. Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J Med. 2006;355:2792-2793. doi: 10.1056/NEJMc062800.
  57. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol.(Oxf.). 2007;191:59-66. doi: 10.1111/j.1748-1716.2007.01713.x.
  58. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med. 2010;48:342-347. doi: 10.1016/j.freeradbiomed.2009.11.006.
  59. Larsen FJ, Schiffer TA, Borniquel S, et al. Dietary Inorganic Nitrate Improves Mitochondrial Efficiency in Humans. Cell Metabolism. 2011;13:149-159. doi: 10.1016/j.cmet.2011.01.004.
  60. Lundberg JO, Weitzberg E, Lundberg JM, Alving K. Intragastric nitric oxide production in humans: Measurements in expelled air. Gut. 1994;35:1543-1546. doi: 10.1136/gut.35.11.1543.
  61. Lundberg JO, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med. 2004;37:395-400. doi: 10.1016/j.freeradbiomed.2004.04.027.
  62. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nature Rev Drug Discov. 2008;7:156-167. doi: 10.1038/nrd2466.
  63. Lundberg JO, Weitzberg E. NO-synthase independent NO generation in mammals. Biochem Biol Res Commun. 2010;396(1):39-45. doi: 10.1016/j.bbrc.2010.02.136.
  64. Martin K, Smee D, Thompson KG, Rattray B. Dietary nitrate does not improve repeated sprint performance. Int J Sports Physiol. Perform. 2014. [e-prepublication] doi: 10.1123/ijspp.2013-0384.
  65. Masschelein E, Van Thienen R, Wang X, et al. Dietary nitrate improves muscle but not cerebral oxygenation status during exercise in hypoxia. J Appl Physiol. 2012;113(5):736-745. doi: 10.1152/japplphysiol.01253.2011.
  66. Melillo G, Musso T, Sica A, et al. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med. 1995;182:1683-1693. doi: 10.1084/jem.182.6.1683.
  67. Millet GP, Roels B, Schmitt L, et al. Combining hypoxic methods for peak performance. Sports Med. 2010;40:1-25. doi: 10.2165/11317920-000000000-00000.
  68. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329:2002-2012. doi: 10.1056/NEJM199312303292706.
  69. Mogensen M, Bagger M, Pedersen PK, et al. Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol. 2006;571:669-681. doi: 10.1113/jphysiol.2005.101691.
  70. Moseley L, Achten J, Martin JC, Jeukendrup AE. No differences in cycling efficiency between world-class and recreational cyclists. Int J Sports Med. 2004;25:374-379. doi: 10.1055/s-2004-815848.
  71. Muggeridge DJ, Howe CCF, Spendiff O, et al. The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers. Int J Sport Nutr Exerc Metab. 2013;23(5):498-506.
  72. Muggeridge DJ, Howe CCF, Spendiff O, et al. A Single Dose of Beetroot Juice Enhances Cycling Performance in Simulated Altitude. Med Sci Sports Excer. 2014;46(1):143-150. doi: 10.1249/MSS.0b013e3182a1dc51.
  73. North AJ, Lau KS, Bratton TS, et al. Oxygen upregulates nitric oxide synthase gene expression in ovine fetal pulmonary artery endothelial cells. Amer J Physiol Lung Cell Mol Physiol. 1996;270: L643-L649.
  74. Pan J, Burgher KL, Szczepanik AM, Ringheim GE. Tyrosine phosphorylation of inducible nitric oxide synthase: implications for potential post-translational regulation. Biochem J. 1996;314:889-894. doi: 10.1042/bj3140889.
  75. Peacock O, Tjønna AE, James P, et al. Dietary nitrate does not enhance running performance in elite cross-country skiers. Med Sci Sports Exerc. 2012;44(11):2213-2219. doi: 10.1249/MSS.0b013e3182640f48.
  76. Patel JM, Block ER. Sulfhydryl-disulfide modulation and the role of disulfide oxidoreductases in regulation of the catalytic activity of nitric oxide synthase in pulmonary artery endothelial cells. Amer J Respir Cell Mol Biol. 1995;13:352-359. doi: 10.1165/ajrcmb.13.3.7544597.
  77. Rolfe DF, Hulbert AJ, Brand MD. Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat. Biochem Biophys Acta. 1994;1188(3):405-416. doi: 10.1016/0005-2728(94)90062-0.
  78. Siervo M, Lara J, Ogbonmwan I, Mathers JC. Inorganic Nitrate and Beetroot Juice Supplementation Reduces Blood Pressure in Adults: A Systematic Review and Meta-Analysis. J Nutr. 2013;143(6):818-826. doi: 10.3945/jn.112.170233.
  79. Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001;81(1):209237.
  80. Tannenbaum SR, Correa P. Nitrate and gastric cancer risks. Nature. 1985;317:675-676. doi: 10.1038/317675b0.
  81. Tonkonogi M, Walsh B, Tiivel T, et al. Mitochondrial function in human skeletal muscle is not impaired by high intensity exercise. Pflugers Arch. 1999;437:562-568. doi: 10.1007/s004240050818.
  82. Totzeck M, Hendgen-Cotta UB, Rammos C, et al. Assessment of the functional diversity of human myoglobin. Nitric Oxide. 2012;26(4):211-216. doi: 10.1016/j.niox.2012.03.001.
  83. Totzeck M, Hendgen-Cotta UB, Rammos C, et al. Higher endogenous nitrite levels are associated with superior exercise capacity in highly trained athletes. Nitric Oxide. 2012;27(2):75-81. doi: 10.1016/j.niox.2012.05.003.
  84. Totzeck M, Hendgen-Cotta UB, Kelm M, Rassaf T. Crosstalk between Nitrite, Myoglobin and Reactive Oxygen Species to Regulate Vasodilation under Hypoxia. PLoS One(Public Library of Science). 2014;9(8): eCollection 2014.
  85. Vanhatalo A, Fulford J, Bailey SJ, et al. Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J Physiol. 2011;589:5517-5528. doi: 10.1113/jphysiol.2011.216341.
  86. van Faassen EE, Bahrami S, Feelisch M, et al. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev. 2009;29:683-741. doi: 10.1002/med.20151.
  87. Vanin AF, Bevers LM, Slama-Schwok A, van Faassen EE. Nitric oxide synthase reduces nitrite to NO under anoxia. Cell Mol Life Sci. 2007;64:96-103. doi: 10.1007/s00018-006-6374-2.
  88. Webb AJ, Patel N, Loukogeorgakis S, et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51:784-790. doi: 10.1161/HYPERTENSIONAHA.107.103523.
  89. Wilber R L. Application of altitude/hypoxic training by elite athletes. Med Sci Sports Exerc. 2007;39:16101624. doi: 10.1249/mss.0b013e3180de49e6.
  90. Wilkerson DP, Hayward GM, Bailey SJ, et al. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur J Appl Physiol. 2012;112(2):4127-4134. doi: 10.1007/s00421-012-2397-6.
  91. Wylie LJ, Kelly J, Bailey SJ, et al. Beetroot juice and exercise: pharmacodynamic and dose-response relationships. J Appl Physiol. 2013;115:325-336. doi: 10.1152/japplphysiol.00372.2013.
  92. Zweier JL, Li H, Samouilov A, Liu X. Mechanisms of nitrite reduction to nitric oxide in the heart and vessel wall. Nitric Oxide. 2010;22:83-90. doi: 10.1016/j.niox.2009.12.004.

Copyright (c) 2016 Radchenko A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».