Approaches to the assessment of quantitative composition of drugs based on natural peptides containing glycosaminoglycan-peptide complex

封面

如何引用文章

全文:

详细

The  preparations  isolated  from  the  biomaterial  of  farm  animals  and  fish  were  studied. These  preparations (rumalon,  alflutop)  cannot  be  obtained  in  equal  proportions  and  concentrations  during  their  production. An algorithm for quantitative determination of components of peptides of natural origin based on the study of model drugs containing a glycosaminoglycan-peptide complex has been developed. Using infrared spectroscopy and high performance liquid chromatography, the concentrations of chondroitin sodium sulfate, hyaluronic acid, glucosamine, protein, free amino acids and amino acids that make up the peptides (alflutop and rumalon) were established. In comparison with the majority of monocomponent drugs registered in the territory of the Russian Federation and containing chondroitin sodium sulfate at a concentration of 100 mg/ml, glucosamine drugs (200 mg/ml), hyaluronic acid drugs (10 mg/ml) it was found that the main active components of the studied drugs were more than 50, 100 and 7 times smaller. At the same time, the preparations under study contained a large percentage of free amino acids or short-chain peptides. It indirectly suggests their participation in the clinical efficacy of drugs based on natural peptides.

The developed algorithm for quantitative determination of components of peptide preparations of natural origin, including common and generally available methods sequence (identification of samples by infrared spectroscopy in comparison with standard samples, quantitative determination of chondroitin sodium sulfate, hyaluronic acid, glucosamine, protein and amino acids by infrared spectroscopy and highly efficient liquid chromatography) is advisable to use when determining minimum specific values of contents (concentrations) of active components and adjuvants of peptide origin in studies and registration of drugs based on them, as well as to justify ways in order to search and explain the mechanisms of action of such compounds.

作者简介

Nikolai Vengerovich

Saint-Petersburg State Chemical and Pharmaceutical University; Institute of Military Medicine, Russian Federation of Ministry of Defense

编辑信件的主要联系方式.
Email: nickolai.vengerovich@pharminnotech.com
SPIN 代码: 6690-9649
Scopus 作者 ID: 511722

Doctor of Medicine (MD), Professor of the Industrial Ecology Department, Deputy Head of Department State Research

俄罗斯联邦, 197376, St. Petersburg, Professor Popov, house 14, lit. A; 195043, St. Petersburg, Lesoparkovaya, house 4

Nikolai Efimov

Negosudarstvennoe uchrezhdenie zdravoohraneniia "Dorozhnaia klinicheskaia bolnitca na stantcii Cheliabinsk otkrytogo aktcionernogo obshchestva "Rossiiskie zheleznye dorogi"

Email: nvef@rambler.ru
ORCID iD: 0000-0002-7703-0190
Researcher ID: X-1354-2019

Doctor of Medical Sciences, Professor, head of clinical research Department

俄罗斯联邦, 195271, St. Petersburg, Prospect Mechnikova, 27

Natalia Rogozhina

Peoples' Friendship University of Russia

Email: rogozhina26@gmail.com

master student

俄罗斯联邦, 117198, Moscow, Miklukho-Maklaya str. 6

Vladimir Stepchenkov

Peoples' Friendship University of Russia

Email: vstepchenkov@icloud.com

master student,

俄罗斯联邦, 117198, Moscow, Miklukho-Maklaya str. 6

参考

  1. Шабанов, П. Д. Фармакология лекарственных препаратов пептидной структуры / П. Д. Шабанов // Психофармакология и биологическая наркология. – 2008. – Т. 8. – Вып. 3-4. – С. 2399–2425.
  2. Бабина, С. А. Лекарственные средства на основе пептидов: применение, технологии получения / С. А. Бабина, А. Ю. Желтышева, Г. О. Шуклин [и др.] // Международный студенческий научный вестник: электронный журнал. – 2019. – № 3. – С. 21–29. – URL: http://eduherald.ru/ru/article/view?id=19681 (дата обращения: 06.02.2020). – Текст: электронный.
  3. Николаева, Т. И. Разработка комплекса низкомолекулярных пептидов коллагена с гликозаминогликановыми компонентами / Т. И. Николаева, К. С. Лауринавичюс, В. В. Капцов [и др.] – doi: 10.1007/s10517-018-4229-0 // Бюллетень экспериментальной биологии и медицины. – 2018. – Т. 165. – № 5. – С. 571–576.
  4. Camarero-Espinosa S, Cooper-White J.J. Combinatorial presentation of cartilage-inspired peptides on nanopatterned surfaces enables directed differentiation of human mesenchymal stem cells towards distinct articular chondrogenic phenotypes. Biomaterials. 2019; 210: 105–15. doi: 10.1016/j.biomaterials.2019.04.003.
  5. Pavelkґa K, Gatterovґa J, Gollerova V, et al. A 5-year randomized controlled, double-blind study of glycosaminoglycan polysulphuric acid complex (Rumalon®) as a structure modifying therapy in osteoarthritis of the hip and knee. Osteoarthritis and Cartilage. 2000; 8: 335–42. doi: 10.1053/joca.1999.0307.
  6. Anouz R, Repanas A, Schwarz E, Groth T. Novel Surface Coatings Using Oxidized Glycosaminoglycans as Delivery Systems of Bone Morphogenetic Protein 2 (BMP-2) for Bone Regeneration. Macromol Biosci. 2018; 18 (11): 1 10. doi: 10.1002/mabi.201800283.
  7. Zykwinska A, Marquis M, Godin M, et al. Microcarriers Based on Glycosaminoglycan-Like Marine Exopolysaccharide for TGF-β1Long-Term Protection. Marine Drugs. 2019; 17 (1): 65. doi: 10.3390/md17010065.
  8. Jian WH, Wang HC, Kuan CH, et al. Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration. Biomaterials. 2018; 174: 17–30. doi: 10.1016/j.biomaterials.2018.05.009.
  9. Pan Y, Wang P, Zhang F, et al. Glycosaminoglycans from fish swim bladder: isolation, structural characterization and bioactive potential. Glycoconj J. 2018; 35 (1): 87–94. doi: 10.1007/s10719-017-9804-5.
  10. Yamada H, Nakamura U, Nakamura T. Study of the cartilage matrix production-promoting effect of chicken leg extract and identification of the active ingredient. Nutrition Research and Practice. 2019; 13 (6): 480–7. doi: 10.4162/nrp.2019.13.6.480.
  11. Prasanna P, Dutta D, Ganguly S, et al. Isolation and mass spectrometry based hydroxyproline mapping of type II collagen derived from Capra hircus ear cartilage. Communications Biology. 2019; 2: 11–21.
  12. Государственная фармакопея Российской Федерации / Министерство здравоохранения Российской Федерации. – 14-е изд. – Т. 1. – Москва, 2018. URL: http://resource.rucml.ru/feml/pharmacopia/14_1/HTML/index.html (дата обращения: 06.02.2020). – Текст: электронный.
  13. European Pharmacopoeia (Ph. Eur.). 2020. 10th edition. Available from: https://www.edqm.eu/en/european_pharmacopoeia_10th_edition.
  14. Wu Y, Hussain M, Fassihi R. Development of a simple analytical methodology for determination of glucosamine release from modified release matrix tablets. Journal of Pharmaceutical and Biomedical Analysis. 2005; 38 (2): 263–9. doi: 10.1016/j.jpba.2005.01.001.
  15. Shao Y, Alluri R, Mummert M, Koetter U. A stability-indicating HPLC method for the determination of glucosamine in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis. 2004; 35: 625–31. doi: 10.1038/s42003-019-0394-6.

版权所有 © Vengerovich N.G., Efimov N.V., Rogozhina N.I., Stepchenkov V.I., 2020

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


##common.cookie##