DNA fragmentation and hydroxymethylation in ejaculated spermatozoa in normozoospermia and pathozoospermia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The search for new criteria for semen quality based on the evaluation of the structural and functional state of the sperm genome remains a relevant task in reproductive medicine.

AIM: This work aimed to assess DNA integrity and the content of 5-hydroxymethylcytosine (5hmC) in the same ejaculated spermatozoa obtained from patients with normozoospermia and pathozoospermia.

METHODS: The study included semen samples from 63 patients with normozoospermia (n = 33) and pathozoospermia (n = 30). Microscopic slides were prepared from the samples, on which fragmented DNA was first detected using the TUNEL assay, followed by digital image acquisition. Subsequently, 5hmC was detected by indirect immunofluorescence, and digital images of the same microscopic fields were acquired again. In total, 126,000 spermatozoa were analyzed (2000 per sample).

RESULTS: A substantial proportion of spermatozoa (72.8%–94.2%) in all samples showed no DNA integrity violations and exhibited a low (background) level of 5hmC. The proportions of spermatozoa exhibiting DNA fragmentation, increased hydroxymethylation, or both characteristics simultaneously were 0.05%–13.8%, 0.15%–11.5%, and 0.99%–13.38%, respectively. The proportion of spermatozoa with DNA fragmentation and/or DNA hyperhydroxymethylation did not differ between patients with normozoospermia and those with pathozoospermia. DNA fragmentation and DNA hyperhydroxymethylation in ejaculated spermatozoa were found to be interdependent, and their coexistence in gametes was nonrandom.

CONCLUSION: The nonrandom coexistence of DNA fragmentation and DNA hyperhydroxymethylation in spermatozoa, along with the interdependence of these features, indicates a common trigger, most likely oxidative stress. However, the presence of additional factors leading to DNA damage or altered hydroxymethylation levels may explain the less than complete overlap of these features in spermatozoa. The assessment of DNA fragmentation and hydroxymethylation levels in spermatozoa appears to be a promising approach for evaluating semen quality and identifying potential causes of idiopathic infertility.

About the authors

Yanina M. Sagurova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: yanina.sagurova96@mail.ru
ORCID iD: 0000-0003-4947-8171
SPIN-code: 8908-7033
Russian Federation, Saint Petersburg

Olga A. Efimova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: efimova_o82@mail.ru
ORCID iD: 0000-0003-4495-0983
SPIN-code: 6959-5014

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Mikhail I. Krapivin

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: krapivin-mihail@mail.ru
ORCID iD: 0000-0002-1693-5973
SPIN-code: 4989-1932
Russian Federation, Saint Petersburg

Mariia A. Ishchuk

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: mashamazilina@gmail.com
ORCID iD: 0000-0002-4443-4287
SPIN-code: 1237-6373
Russian Federation, Saint Petersburg

Dmitrii A. Staroverov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: st110982@student.spbu.ru
ORCID iD: 0009-0004-9716-4964
SPIN-code: 3438-7974
Russian Federation, Saint Petersburg

Ekaterina D. Trusova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: trusova.ek@mail.ru
ORCID iD: 0009-0005-6529-5799
Russian Federation, Saint Petersburg

Evgeniia M. Komarova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: evgmkomarova@gmail.com
ORCID iD: 0000-0002-9988-9879
SPIN-code: 1056-7821

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Olesya N. Bespalova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: shiggerra@mail.ru
ORCID iD: 0000-0002-6542-5953
SPIN-code: 4732-8089

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Anna A. Pendina

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: pendina@mail.ru
ORCID iD: 0000-0001-9182-9188
SPIN-code: 3123-2133

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

References

  1. Agarwal A, Bascaran S, Parekh N, et al. Male infertility. Lancet. 2021;397(10271):319–333. doi: 10.1016/S0140-6736(20)32667-2 EDN: QXRHSV
  2. Yatsenko SA, Rajkovic A. Genetics of human female infertility. Biol Reprod. 2019;101(3):549–566. doi: 10.1017/9781009197700.009 EDN: VFXDNV
  3. Eisenberg ML, Esteves SC, Lamb DJ, et al. Male infertility. Nat Rev Dis Primers. 2023;9(1):49. doi: 10.1038/s41572-023-00459-w EDN: PWSTST
  4. Bala R, Singh V, Rajender S, Singh K. Environment, lifestyle, and female infertility. Reprod Sci. 2021;28(3):617–638. doi: 10.1007/s43032-020-00279-3 EDN: HRNBPQ
  5. Matzuk MM, Lamb DJ. The biology of infertility: research advances and clinical challenges. Nat Med. 2008;14(11):1197–1213. doi: 10.1038/nm.f.1895
  6. Bracke A, Peeters K, Punjabi U, et al. A search for molecular mechanisms underlying male idiopathic infertility. Reprod Biomed online. 2018;36(3):327–339. doi: 10.1016/j.rbmo.2017.12.005
  7. Marinaro JA. Sperm DNA fragmentation and its interaction with female factors. Fertil Steril. 2023;120(4):715–719. doi: 10.1016/j.fertnstert.2023.06.001 EDN: BURRQB
  8. Dai Y, Liu J, Yuan E, et al. Relationship among traditional semen parameters, sperm DNA fragmentation, and unexplained recurrent miscarriage: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2022;12:802632. doi: 10.3389/fendo.2021.802632 EDN: ZBMYND
  9. Malić Vončina S, Stenqvist A, Bungum M, et al. Sperm DNA fragmentation index and cumulative live birth rate in a cohort of 2,713 couples undergoing assisted reproduction treatment. Fertil Steril. 2021;116(6):1483–1490. doi: 10.1016/j.fertnstert.2021.06.049 EDN: UGVRVD
  10. Sunday OE, Nwogu A, Samue EE, et al. Single nucleotide polymorphisms in protamine 2 genes in fertile and infertile human males in Southwest, Nigeria. World J Adv Res Rev. 2024;23(1):1365–1373. doi: 10.30574/wjarr.2024.23.1.1834 EDN: OIHAGW
  11. Ni K, Spiess AN, Schuppe HC, Steger K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology. 2016;4(5):789–799. doi: 10.1111/andr.12216
  12. Aston KI, Uren PJ, Jenkins TG, et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril. 2015;104(6):1388–1397.e1–5. doi: 10.1016/j.juro.2016.07.015
  13. Du Y, Li M, Chen J, et al. Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia. Hum Reprod. 2016;31(1):24–33. doi: 10.1093/humrep/dev283
  14. Urdinguio RG, Bayón GF, Dmitrijeva M, et al. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod. 2015;30(5):1014–1028. doi: 10.1093/humrep/dev053 EDN: KRDPHU
  15. Olszewska M, Kordyl O, Kamieniczna M. Global 5mC and 5hmC DNA levels in human sperm subpopulations with differentially protaminated chromatin in normo- and oligoasthenozoospermic males. Int J Mol Sci. 2022;23(9):4516. doi: 10.3390/ijms23094516 EDN: KZINII
  16. Efimova OA, Krapivin MI, Parfenyev SE, et al. Differential distribution of 5-formylcytosine and 5-carboxylcytosine in human spermatogenic cells and spermatozoa. Ecological genetics. 2023;21(1):61–74. doi: 10.17816/ecogen120080 EDN: UVAHXT
  17. Wang XX, Sun BF, Jiao J, et al. Genome-wide 5-hydroxymethylcytosine modification pattern is a novel epigenetic feature of globozoospermia. Oncotarget. 2015;6(9):6535. doi: 10.18632/oncotarget.3163
  18. Mazilina MA, Komarova EM, Lesik EA, et al. The influence of sperm DNA fragmentation on the efficiency of fertilization and development of human embryos cultured in vitro. Obstetrics and gynecology. 2017;(3):69–74. doi: 10.18565/aig.2017.3.69-74 EDN: YHSRCV
  19. Efimova OA, Pendina AA, Tikhonov AV, et al. Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality. Oncotarget. 2017;8(51):88294–88307. doi: 10.18632/oncotarget.18331 EDN: XNXTPK
  20. WHO laboratory manual for the examination and processing of human semen. Sixth Edition. World Health Organization; 2021.
  21. Efimova OA, Pendina AA, Tikhonov AV, et al. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos. Reproduction. 2015;149:223–233. doi: 10.1530/rep-14-0343 EDN: UEORLN
  22. Shcherbitskaia AD, Komarova EM, Milyutina YP, et al. Age-related COVID-19 influence on male fertility. Int J Mol Sci. 2023;24(21):15742. doi: 10.3390/ijms242115742 EDN: OCSBYV
  23. Hamilton TRDS, Assumpção MEOD. Sperm DNA fragmentation: causes and identification. Zygote. 2020;28(1):1–8. doi: 10.1017/s0967199419000595
  24. Sakkas D, Manicardi G, Bianchi PG, et al. Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa. Biol Reprod. 1995;52(5):1149–1155. doi: 10.1095/biolreprod52.5.1149
  25. Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod. 2004;70(4):910–918. doi: 10.1095/biolreprod.103.022541
  26. Sakkas D, Mariethoz E, Manicardi G, et al. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4(1):31–37. doi: 10.1530/ror.0.0040031 EDN: YCRUZZ
  27. Lopes S, Jurisicova A, Sun JG, Casper RF. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod. 1998;13(4):896–900. doi: 10.1093/humrep/13.4.896 EDN: IPGOFV
  28. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12(5):3117–3132. doi: 10.3390/ijms12053117
  29. Elshal MF, El-Sayed IH, Elsaied MA, et al. Sperm head defects and disturbances in spermatozoal chromatin and DNA integrities in idiopathic infertile subjects: association with cigarette smoking. Clin Biochem. 2009;42(7–8):589–594. doi: 10.1016/j.clinbiochem.2008.11.012 EDN: LXPTLZ
  30. Sanchez-Pena LC, Reyes BE, Lopez-Carrillo L, et al. Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers. Toxicol Appl Pharmacol. 2004;196(1):108–113. doi: 10.1016/j.taap.2003.11.023
  31. Garolla A, Torino M, Sartini B, et al. Seminal and molecular evidence that sauna exposure affects human spermatogenesis. Hum Reprod. 2013;28(4):877–885. doi: 10.3410/f.717991598.793476086
  32. Meeker JD, Ehrlich S, Toth TL, et al. Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reprod Toxicol. 2010;30(4):532–539. doi: 10.1016/j.reprotox.2010.07.005
  33. Desai NR, Kesari KK, Agarwal A. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod Biol Endocrinol. 2009;7:114. doi: 10.1186/1477-7827-7-114 EDN: OBAJTP
  34. Wossidlo M, Nakamura T, Lepikhov K, et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun. 2011;2:241. doi: 10.1038/ncomms1240 EDN: YAWDUR
  35. Hill PWS, Amouroux R, Hajkova P. DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: An emerging complex story. Genomics. 2014;104(5):324–333. doi: 10.1016/j.ygeno.2014.08.012
  36. Efimova OA, Pendina AA, Tikhonov AV, et al. Oxidized form of 5-methylcytosine-5-hydroxymethylcytosine: a new insight into the biological significance in the mammalian genome. Russian Journal of Genetics. 2015;5:75–81. doi: 10.1134/S2079059715020033 EDN: UFTKBT
  37. Zheng K, Lyu Z, Chen J, Chen G. 5-Hydroxymethylcytosine: Far Beyond the Intermediate of DNA Demethylation. Int J Mol Sci. 2024;25(21):11780. doi: 10.3390/ijms252111780 EDN: TVJZFY
  38. Efimova OA, Koltsova AS, Krapivin MI, et al. Environmental epigenetics and genome flexibility: Focus on 5-hydroxymethylcytosine. Int J Mol Sci. 2020;21(9):3223. doi: 10.3390/ijms21093223 EDN: WHHRKR
  39. Zheng H, Zhou X, Li DK, et al. Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men. PLoS One. 2017;12(6):e0178535. doi: 10.1371/journal.pone.0178535
  40. Feng Q, Li Q, Hu Y, et al. TET1 overexpression affects cell proliferation and apoptosis in aging ovaries. J Assist Reprod Genet. 2024;41(12):3491–3502. doi: 10.1007/s10815-024-03271-x EDN: WZGQKY
  41. Luo Shanshan, Hu Chengyun, Li Xue, Tang Chaoliang. High S-adenosylmethionine-containing diet inhibits post-stroke neuronal apoptosis and ROS accumulation in mice through TET3-mediated DNA demethylation. Journal of Xuzhou Medical University. 2024;44(7):469–476. doi: 10.3969/j.issn.2096-3882.2024.07.001
  42. Madugundu GS, Cadet J, Wagner JR. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Res. 2014;42(11):7450–7460. doi: 10.1093/nar/gku334
  43. Cadet J, Wagner JR. Radiation-induced damage to cellular DNA: Chemical nature and mechanisms of lesion formation. Radiat Phys Chem. 2016;128:54–59. doi: 10.1016/j.radphyschem.2016.04.018 EDN: XYWEER

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).