Synergistic effect of exogenous P53 and sodium butyrate on tumor cell survival

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The P53 protein is a transcription factor that regulates the expression of genes involved in numerous cellular processes, including cell cycle arrest, apoptosis, cell proliferation, and DNA repair. Its role as a multifunctional tumor suppressor makes P53 an attractive and promising target for cancer therapy.

AIM: This work aimed to analyze the combined effect of transfection with a plasmid encoding the p53 gene (a genetic approach), the histone deacetylase inhibitor sodium butyrate (epigenetic regulation), and co-cultivation with exosomes secreted by cells expressing wild-type P53 (modeling intercellular communication) on the survival of various human tumor cell lines.

METHODS: The study was conducted using four transplantable cell lines: HeLa (epithelioid cervical carcinoma) and HT-1080 (fibrosarcoma) cells harboring the wild-type p53 gene, as well as K562 (chronic myelogenous leukemia) and Gl-V (primary glioma cell culture) cells deficient in p53 (P53–/–). Cell transfection was performed using a P53-GFP plasmid constructed in the Laboratory of Cell Biology, National Research Center “Kurchatov Institute.” This plasmid encodes the P53 protein fused to green fluorescent protein (GFP) at its N-terminus. Successful transfection was confirmed by detecting P53-GFP expression using confocal microscopy. The level of P53 protein in the cells was determined by Western blotting. To quantitatively assess proliferation and cell cycle parameters under conditions of histone deacetylase inhibition, sodium butyrate (NaBu) was added to the culture medium at a final concentration of 2.5 mM. The analysis was performed using an automated cell counter, flow cytometry, or colony formation assays. Exosomes were isolated from the collected conditioned medium by ultracentrifugation.

RESULTS: When only one of the above approaches was applied, the outcome largely depended on the P53 status of the analyzed tumor cells. The combination of epigenetic modulation through inhibition of histone deacetylase activity with genetic regulation or exposure to exosomes derived from wild-type P53–expressing cells produced a pronounced synergistic effect and several-fold increase in the efficiency of tumor cell growth suppression compared with monotherapy.

CONCLUSION: It appears that a strategy combining genetic methods, epigenetic modulation, and intercellular communication mechanisms that affect different components of the P53 regulatory network may substantially enhance the efficacy of P53-targeted anticancer therapy.

About the authors

Roman A. Kovalev

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

Email: kovalev_ra@pnpi.nrcki.ru
ORCID iD: 0000-0003-2214-0269
SPIN-code: 1386-2357
Russian Federation, Gatchina, Leningrad Region

Elena V. Semenova

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

Email: semenova_el.spb@mail.ru
ORCID iD: 0000-0003-0852-6595
SPIN-code: 2758-6825

Cand. Sci. (Biology)

Russian Federation, Gatchina, Leningrad Region

Tatyana A. Shtam

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”; National Research Center “Kurchatov Institute”

Email: Shtam_ta@pnpi.nrcki.ru
ORCID iD: 0000-0003-0651-4785
SPIN-code: 3738-8187

Cand. Sci. (Biology)

Russian Federation, Gatchina, Leningrad Region; Moscow

Vladimir S. Burdakov

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

Email: Burdakov_vs@pnpi.nrcki.ru
ORCID iD: 0000-0001-6025-7367
SPIN-code: 8832-9047
Russian Federation, Gatchina, Leningrad Region

Elena Y. Varfolomeeva

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: Varfolomeeva_EY@pnpi.nrcki.ru
ORCID iD: 0000-0003-3287-4709
SPIN-code: 9426-1667
Scopus Author ID: 6701723593

Cand. Sci. (Biology)

Russian Federation, Gatchina, Leningrad Region

References

  1. Brown CJ, Lain S, Verma CS, et al. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer. 2009;9(12):862–873. doi: 10.1038/nrc2763 EDN: YVPHQB
  2. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9(10):749–758. doi: 10.1038/nrc2723 EDN: NABKIR
  3. Goh AM, Coffill CR, Lane DP. The role of mutant p53 in human cancer. J Pathol. 2011;223(2):116–126. doi: 10.1002/PATH.2784
  4. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413–431. doi: 10.1016/j.cell.2009.04.037 EDN: MMQMUR
  5. Li XL, Zhou J, Chen ZR, et al. P53 mutations in colorectal cancer – molecular pathogenesis and pharmacological reactivation. World J Gastroenterol. 2015;21(1):84–93. doi: 10.3748/wjg.v21.i1.84 EDN: YVUYCN
  6. Makarov EM, Shtam TA, Kovalev RA, et al. The rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis. PLoS One. 2017;12(9):e0185126. doi: 10.1371/journal.pone.0185126 EDN: XNSKIQ
  7. Ventura A, Kirsch DG, McLaughlin ME, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445(7128):661–665. doi: 10.1038/nature05541 EDN: YYSOQD
  8. Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445(7128):656–660. doi: 10.1038/nature05529 EDN: YYDQQL
  9. Lane DP, Cheok CF, Lain S. P53-based cancer therapy. Cold Spring Harb Perspect Biol. 2010;2(9):a001222. doi: 10.1101/cshperspect.a001222
  10. Turner BM. Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol. 2005;12(2):110–112. doi: 10.1038/nsmb0205-110
  11. Semenova EV, Filatov MV. Genetic and epigenetic markers of gliomas. Cell and Tissue Biology. 2013;7(4):303–313. doi: 10.1134/S1990519X13040123 EDN: RFNTSH
  12. Ohashi M, Kanai F, Ueno H, et al. Adenovirus mediated p53 tumour suppressor gene therapy for human gastric cancer cells in vitro and in vivo. Gut. 1999;44(3):366–371. doi: 10.1136/gut.44.3.366
  13. Terui T, Murakami K, Takimoto R, et al. Induction of PIG3 and NOXA through acetylation of p53 at 320 and 373 lysine residues as a mechanism for apoptotic cell death by histone deacetylase inhibitors. Cancer Res. 2003;63(24):8948–8954.
  14. Bandyopadhyay D, Mishra A, Medrano E. Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway. Cancer Res. 2004;64(21):7706–7710. doi: 10.1158/0008-5472.CAN-03-3897
  15. Marouco D, Garabadgiu AV, Melino G, et al. Lysine-specific modifications of p53: a matter of life and death? Oncotarget. 2013;4(10):1556–1571. doi: 10.18632/oncotarget.1436 EDN: SKYFPH
  16. Xie C, Wu B, Chen B, et al. Histone deacetylase inhibitor sodium butyrate suppresses proliferation and promotes apoptosis in osteosarcoma cells by regulation of the MDM2-p53 signaling. Onco Targets Ther. 2016;9:4005–4013. doi: 10.2147/OTT.S105418
  17. Kovalev RA, Shtam TA, Karelov DV, et al. Histone deacetylase inhibitors cause TP53-dependent induction of p21/Waf1 in tumor cells with TP53. Cell and Tissue Biology. 2015;9(3):191–197. doi: 10.1134/S1990519X15030086 EDN: UEWFIZ
  18. Kovalev RA, Shtamm TA, Ibatulin FM, et al. Anti-tumor therapy possibilities of epigenetic trend on models in vitro. Problems in oncology. 2012;58(6):800–807. EDN: RCAZAP
  19. Sossai P. Butyric acid: what is the future for this old substance? Swiss Med Wkly. 2012;142:w13596. doi: 10.4414/smw.2012.13596
  20. Mu D, Gao Z, Guo H, et al. Sodium butyrate induces growth inhibition and apoptosis in human prostate cancer DU145 cells by up-regulation of the expression of annexin A1. PLoS One. 2013;8(9):e74922. doi: 10.1371/journal.pone.0074922
  21. Bukreeva EI, Aksenov ND, Bardin AA, et al. Effect of histone deacetylase inhibitor sodium butyrate (NAB) on transformants E1A+cHa-Ras expressing wild type p53 with suppressed transactivation function. Cell and Tissue Biology. 2009;3(5)445–453. doi: 10.1134/S1990519X09050071 EDN: MWVYFF
  22. Guo H, Choudhury Y, Yang J, et al. Antiglioma effects of combined use of a baculovirual vector expressing wild-type p53 and sodium butyrate. J Gene Med. 2011;13(1):26–36. doi: 10.1002/jgm.1522
  23. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6(1):38–51. doi: 10.1038/nrc1779
  24. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5(1):37–50. doi: 10.1038/nrd1930
  25. Yu J, Qiu S, Ge Q, et al. A novel SAHA-bendamustine hybrid induces apoptosis of leukemia cells. Oncotarget. 2015;6(24):20121–20131. doi: 10.18632/oncotarget.4041
  26. Qiu L, Kelso MJ, Hansen C, et al. Anti-tumour activity in vitro and in vivo of selective differentiating agents containing hydroxamate. Br J Cancer. 1999;80(8):1252–1258. doi: 10.1038/sj.bjc.6690493 EDN: BRCOFB
  27. Lee JH, Choy ML, Ngo L, et al. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci USA. 2010;107(33):14639–14644. doi: 10.1073/pnas.1008522107
  28. Grange C, Tapparo M, Collino F, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 2011;71(15):5346–5356. doi: 10.1158/0008-5472.CAN-11-0241
  29. Kobayashi M, Salomon C, Tapia J, et al. Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200. J Transl Med. 2014;12:4. doi: 10.1186/1479-5876-12-4 EDN: BOYCBW
  30. Kovalev RA, Burdakov VS, Varfolomeeva EY, et al. Exosomes influence the engraftment of tumor cell lines in athymic mice BALB/c nude. Biosci Biotech Res Commun. 2018;11(4):535–554. doi: 10.21786/bbrc/11.4/1
  31. Raimondo F, Morosi L, Chinello C, et al. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics. 2011:11(4):709–720. doi: 10.1002/pmic.201000422
  32. Ung TH, Madsen HJ, Hellwinkel JE, et al. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci. 2014;105(11):1384–1392. doi: 10.1111/cas.12534
  33. Yu S, Cao H, Shen B, et al. Tumor-derived exosomes in cancer progression and treatment failure. Oncotarget. 2015;6(35):37151–37168. doi: 10.18632/oncotarget.6022
  34. Webber J, Yeung V, Clayton A. Extracellular vesicles as modulators of the cancer microenvironment. Semin Cell Dev Biol. 2015;40:27–34. doi: 10.1016/j.semcdb.2015.01.013
  35. Jørgensen MM, Bæk R, Varming K. Potentials and capabilities of the extracellular vesicle (EV) array. J Extracell Vesicles. 2015;4:26048. doi: 10.3402/jev.v4.26048
  36. Fujita Y, Yoshioka Y, Ochiya T. Extracellular vesicle transfer of cancer pathogenic components. Cancer Sci. 2016;107(4):385–390. doi: 10.1111/cas.12896
  37. Shtam TA, Kovalev RA, Varfolomeeva EY, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 2013;11:88. doi: 10.1186/1478-811X-11-88 EDN: QPDDMM
  38. Burdakov VS, Kovalev RA, Pantina RA, et al. Exosomes transfer p53 between cells and can suppress growth and proliferation of p53-negative cells. Cell and Tissue Biology. 2018;12(1):20–26. doi: 10.1134/S1990519X18010030 EDN: XXNGHJ
  39. Urata YN, Takeshita F, Tanaka H, et al. Targeted knockdown of the kinetochore protein D40/Knl-1 inhibits human cancer in a p53 status-independent manner. Sci Rep. 2015;5:13676. doi: 10.1038/srep13676
  40. Neubauer A, He M, Schmidt CA, et al. Genetic alterations in the p53 gene in the blast crisis of chronic myelogeneous leukemia: analysis by polymerase chain reaction based techniques. Leukemia. 1993;7(4):593–600.
  41. Belloc F, Dumain P, Boisseau MR, et al. A flow cytometric method using Hoechst 33342 and propidium iodide for simultaneous cell cycle analysis and apoptosis determination in unfixed cells. Cytometry. 1994;17(1):59–65. doi: 10.1002/cyto.990170108
  42. Naryzhny SN. Blue Dry Western: Simple, economic, informative, and fast way of immunodetection. Anal Biochem. 2009;392(1):90–95. doi: 10.1016/j.ab.2009.05.037
  43. Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170(6):1062–1078. doi: 10.1016/j.cell.2017.08.028
  44. Zhang S, Carlsen L, Hernandez Borrero L, et al. Advanced strategies for therapeutic targeting of wild-type and mutant p53 in cancer. Biomolecules. 2022;12(4):548. doi: 10.3390/biom12040548 EDN: TXXOPI
  45. Tchelebi L, Ashamalla H, Graves PR. Mutant p53 and the response to chemotherapy and radiation. Subcell Biochem. 2014;85:133–159. doi: 10.1007/978-94-017-9211-0_8
  46. Saldaña-Meyer R, Recillas-Targa F. Transcriptional and epigenetic regulation of the p53 tumor suppressor gene. Epigenetics. 2011;6(9):1068–1077. doi: 10.4161/epi.6.9.16683
  47. Hao Q, Lu H, Zhou X. A potential synthetic lethal strategy with PARP inhibitors: Perspective on ‘Inactivation of the tumor suppressor p53 by long noncoding RNA RMRP’. J Mol Cell Biol. 2021;13(9):690–692. doi: 10.1093/jmcb/mjab049 EDN: ZINWII
  48. Tazawa H, Kagawa S, Fujiwara T. Advances in adenovirus-mediated p53 cancer gene therapy. Expert Opin Biol Ther. 2013;13(11):1569–1583. doi: 10.1517/14712598.2013.845662
  49. Pagliaro LC, Keyhani A, Williams D, et al. Repeated intravesical instillations of an adenoviral vector in patients with locally advanced bladder cancer: a phase I study of p53 gene therapy. J Clin Oncol. 2003;2(11):22247–2253. doi: 10.1200/JCO.2003.09.138
  50. Gabrilovich DI. INGN 201 (Advexin): adenoviral p53 gene therapy for cancer. Expert Opin Biol Ther. 2006;6(8):823–832. doi: 10.1517/14712598.6.8.823
  51. Valente JFA, Queiroz JA, Sousa F. p53 as the focus of gene therapy: past, present and future. Curr Drug Targets. 2018;19(15):1801–1817. doi: 10.2174/1389450119666180115165447 EDN: JXIQGH
  52. Kijima M, Yoshida M, Sugita K, et al. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem. 1993;268(30):22429–22435.
  53. Hsi LC, Xi X, Lotan R, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Cancer Res. 2004;64(23):8778–8781. doi: 10.1158/0008-5472.CAN-04-1867
  54. Takimoto R, Kato J, Terui T, et al. Augmentation of antitumor effects of p53 gene therapy by combination with HDAC inhibitor. Cancer Biol Ther. 2005;4(4):421–428. doi: 10.4161/cbt.4.4.1620
  55. Lain S, Hollick JJ, Campbell J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell. 2008;13(5):454–463. doi: 10.1016/j.ccr.2008.03.004

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).