Organophosphate-induced delayed neuropathy: an unresolved problem?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work presents an analysis of recent publications devoted to delayed peripheral neuropathy caused by acute or chronic low-dose exposure to organophosphorus compounds (organophosphate-induced delayed neuropathy, OPIDN). The review discusses the clinical features of the disorder, characterized by a prolonged latent period between toxicant exposure and disease onset, and provides examples of both mass and suicidal poisonings. The morphological substrate of OPIDN includes swelling of distal segments of large axons, disruption of myelin sheath membranes, and subsequent degeneration of nerve fibers of the Wallerian type. The role of Schwann cells in axonal regeneration and the cellular and molecular mechanisms underlying axon–Schwann cell signaling are discussed. Major hypotheses regarding the noncholinergic mechanisms of OPIDN pathogenesis are presented. Special attention is given to the role of neuropathy target esterase as the principal molecular target of organophosphate action, the systemic inhibition of which, in combination with the “aging” reaction, initiates the development of OPIDN. In addition to neuropathy target esterase involvement, the potential role of other molecular targets of organophosphate action, oxidative stress, dysregulation of calcium homeostasis, and neuroinflammation is considered. Examples of experimental models of OPIDN, both in vivo and in vitro, are presented to illustrate approaches to studying its underlying mechanisms.

About the authors

Tatiana N. Savateeva-Lyibimova

Smorodintsev Research Institute of Influenza

Email: drugs_safety@mail.ru
ORCID iD: 0000-0003-4516-3308
SPIN-code: 3543-6799

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Konstantin V. Sivak

Smorodintsev Research Institute of Influenza

Author for correspondence.
Email: kvsivak@gmail.com
ORCID iD: 0000-0003-4064-5033
SPIN-code: 7426-8322

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg

Kira I. Stosman

Smorodintsev Research Institute of Influenza

Email: labtox6@rambler.ru
ORCID iD: 0000-0001-7959-2376
SPIN-code: 8423-0170

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

References

  1. Castelli G, Desai KM, Cantone RE. Peripheral neuropathy: evaluation and differential diagnosis. Am Fam Physician. 2020;102(12):732–739.
  2. Pizova NV. Major metabolic and toxic polyneuropathies in clinical practice. Meditsinskiy sovet. 2021;(19):134–146. doi: 10.21518/2079-701X-2021-19-134-146 EDN: ZCAIAD
  3. Peters J, Staff NP. Update on toxic neuropathies. Curr Treat Options Neurol. 2022;24(5):203–216. doi: 10.1007/s11940-022-00716-5 EDN: QEYQOI
  4. Eskut N, Koskderelioglu A. Neurotoxic agents and peripheral neuropathy. In: Neurotoxicity – New Advances. IntechOpen; 2021. doi: 10.5772/intechopen.101103
  5. Smyth D, Kramarz C, Carr AS, et al. Toxic neuropathies: a practical approach. Pract Neurol. 2023;23(2):120–130. doi: 10.1136/pn-2022-003444 EDN: ICMNLK
  6. Kabdrakhmanova GB, Utepkalieva AP. The role of ecotoxicants in the development of neurotoxicosis. Medicinskij zhurnal Zapadnogo Kazahstana. 2018;57(1):29–35. EDN: XNKCKD
  7. Valentin WM. Toxic peripheral neuropathies: agents and mechanisms. Toxicol Pathol. 2020;48(1):152–173. doi: 10.1177/0192623319854326
  8. Boklazhenko EV, Bodienkova GM, Rusanova DV. Studies of interrelations between neurotrophic antibodies and individual neurophysiological indices in patients with professional chronic mercury intoxication at the post-exposure period. Medical immunology (Russia). 2019;21(6):1197–1202. doi: 10.15789/1563-0625-2019-6-1197-1202 EDN: REVXBX
  9. Staff NP. Peripheral neuropathies due to vitamin and mineral deficiencies, toxins, and medications. Continuum (Minneap Minn). 2020;26(5):1280–1298. doi: 10.1212/CON.0000000000000908 EDN: AMXMFF
  10. Bin-Jumah M, Abdel-Fattah AM, Saied EM, et al. Acrylamide-induced peripheral neuropathy: manifestations, mechanisms, and potential treatment modalities. Environ Sci Pollut Res Int. 2021;28(11):13031–13046. doi: 10.1007/s11356-020-12287-6 EDN: ONEMBJ
  11. Koszewicz M, Markowska K, Waliszewska-Prosol M, et al. The impact of chronic co-exposure to different heavy metals on small fibers of peripheral nerves. A study of metal industry workers. J Occup Med Toxicol. 2021;16(1):12. doi: 10.1186/s12995-021-00302-6 EDN: GZITSW
  12. Adeyinka A, Patel A, Kondamudi NP. Cholinergic Crisis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. 2025 Apr 6.
  13. Pannu AK, Bhalla A, Vishnu I, et al. Organophosphate induced delayed neuropathy after an acute cholinergic crisis in self-poisoning. Clin Toxicol. 2021;59(6):488–492. doi: 10.1080/15563650.2020.1832233 EDN: PDLLYZ
  14. Patel A, Chavan G, Nagpal AK. Navigating the neurological abyss: a comprehensive review of organophosphate poisoning complications. Cureus. 2024;16(2):e54422. doi: 10.7759/cureus.54422 DN: PVDYHL
  15. Nayak P, Mallick AK, Mishra SH, et al. Organophosphorus-induced toxic myeloneuropathy: series of three adolescent patients with short review. J Pediatr Neurosci. 2019;14(1):42–45. doi: 10.4103/jpn.JPN_45_18
  16. Khan A, Seth NH, Sharath H. Physical rehabilitation crucial in motor axonal neuropathy following organophosphorus poisoning: a case study. Cureus. 2024;16(2):e54145. doi: 10.7759/cureus.54145 EDN: VKTKHK
  17. Rao BRP, Mohanty L, Kampali H, et al. Organophosphate-induced delayed neuropathy: a rare case presentation. J Integr Med Res. 2024;2(1):33–36. doi: 10.4103/jimr.jimr_46_23 EDN: VHQKMY
  18. Koliatsos VE, Aleksandris AS. Wallerian degeneration as a therapeutic target in traumatic brain injury. Curr Opin Neurol. 2019;32(6):786–795. doi: 10.1097/WCO.0000000000000763
  19. Gajurel BP, Giri S, Poudel N, et al. Wallerian degeneration in the brain after organophosphorus poisoning: a case report. Ann Med Surg (Lond). 2023;85(4):926–930. doi: 10.1097/MS9.0000000000000102 EDN: DPIUDT
  20. Hervera A, De Virgiliis F, Palmisano I, et al. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol. 2018;20(3):307–319. doi: 10.1038/s41556-018-0039-x
  21. Rosell AL, Neukomm LJ. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol. 2019;9(8):190118. doi: 10.1098/rsob.190118
  22. Jessen KR, Mirsky Rh. The success and failure of the Schwann cell response to nerve injury. Front Cell Neurosci. 2019;13:33. doi: 10.3389/fncel.2019.00033
  23. Dahlin LB. The dynamics of nerve degeneration and regeneration in a healthy milieu and in diabetes. Int J Mol Sci. 2023;24(20):15241. doi: 10.3390/ijms242015241 EDN: JREZYA
  24. Jortner BS. Common structural lesions of the peripheral nervous system. Toxicol Pathol. 2020;48(1):96–104. doi: 10.1177/0192623319826068
  25. Nocera G, Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci. 2020;77(20):3977–3989. doi: 10.1007/s00018-020-03516-9 EDN: PEYVIO
  26. Balakrishnan A, Belfiore L, Chu TH, et al. Insights into the role and potential of Schwann cells for peripheral nerve repair from studies of development and injury. Front Mol Neurosci. 2021;13:608442. doi: 10.3389/fnmol.2020.608442 EDN: LOQPPO
  27. Stassart RM, Woodhoo A. Axo-glial interaction in the injured PNS. Dev Neurobiol. 2021;81(5):490–506. doi: 10.1002/dneu.22771 EDN: AOLWCG
  28. Endo T, Kadoya K, Suzuki T, et al. Mature but not developing Schwann cells promote axon regeneration after peripheral nerve injury. NPJ Regen Med. 2022;7(1):12. doi: 10.1038/s41536-022-00205-y
  29. Bosch-Queralt M, Fledrich R, Stassart RM. Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis. 2023;176:105952. doi: 10.1016/j.nbd.2022.105952 EDN: MYNBLZ
  30. Tian W, Czopka T, López-Schier H. Systemic loss of Sarm1 protects Schwann cells from chemotoxicity by delaying axon degeneration. Commun Biol. 2020;3(1):49. doi: 10.1038/s42003-020-0776-9 EDN: DJGGBB
  31. Bouçanova F, Chras R. Metabolic interaction between Shwann cells and axons under physiological and disease conditions. Front Cell Neurosci. 2020;14:148. doi: 10.3389/fncel.2020/00148
  32. McGonigal R, Campbell CI, Barrie JA, et al. Schwann cell nodal membrane disruption triggers bystander axonal degeneration in a Guillain–Barré syndrome mouse model. J Clin Invest. 2022;132(14):e158524. doi: 10.1172/JCI158524 EDN: LNYAQJ
  33. Manole E, Bastian AE, Oproiu AM, et al. Schwann cell plasticity in peripheral nerve regeneration after injury. In: Baloyannis JS, Rossi HF, Liu W, eds. Demyelination Disorders. IntechOpen; 2022. P. 1–20. doi: 10.5772/intechopen.91805
  34. Oliveira JT, Yanick C, Wein N, Gomez Limia CE. Neuron-Schwann cell interactions in peripheral nervous system homeostasis, disease, and preclinical treatment. Front Cell Neurosci. 2023;17:1248922. doi: 10.3389/fncel.2023.1248922 EDN: OUZRSP
  35. Poitelon Y, Kopec AM, Belin S. Myelin fat facts: an overview of lipids and fatty acid metabolism. Cells. 2020;9(4):812. doi: 10.3390/cells9040812 EDN: VCOVIA
  36. Kister A, Kister I. Overview of myelin, major myelin lipids, and myelin-associated proteins. Front Chem. 2023;10:1041961. doi: 10.3389/fchem.2022.1041961 EDN: MANEIF
  37. Petrova ES. Current views on Schwann cells: development, plasticity, functions. Journal of Evolutionary Biochemistry and Physiology. 2019;55(6):383–397. doi: 10/1134/S0044452919060068 EDN: DLTOBX
  38. Previtali SC. Peripheral nerve development and the pathogenesis of peripheral neuropathy: the sorting point. Neurotherapeutics. 2021;18(4):2156–2168. doi: 10.1007/s13311-021-01080-z EDN: EZKODC
  39. Ioghen O, Manole E, Gherghiceanu M, et al. Non-myelinating schwann cells in health and disease. In: Baloyannis JS, Rossi HF, Liu W, eds. Demyelination Disorders. IntechOpen; 2022. doi: 10.5772/intechopen.91930
  40. Gonias SL, Campana WM. Schwann cell extracellular vesicles: judging a book by its cover. Neural Regen Res. 2023;18(2):325–326. doi: 10.4103/1673-5374.346478 EDN: APYSEO
  41. Jessen KR, Arthur-Farraj P. Repair Schwann cell update: adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia. 2019;67(3):421–437. doi: 10.1002/glia.23532
  42. Rigoni M, Negro S. Signals orchestrating peripheral nerve repair. Cells. 2020;9(8):1768. doi: 10.3390/cells9081768 EDN: SIFHUO
  43. Reed CB, Feltri ML, Wilson ER. Peripheral glia diversity. J Anat. 2022;241(5):1219–1234. doi: 10.1111/joa.13484 EDN: QGSUZD
  44. Trolese MC, Scarpa C, Melfi V, et al. Boosting the peripheral immune response in the skeletal muscles improved motor function in ALS transgenic mice. Mol Ther. 2022;30(8):2760–2784. doi: 10.1016/j.ymthe.2022.04.018 EDN: OVEJRV
  45. Suzuki T, Kadoya K, Endo T, et al. Molecular and regenerative characterization of repair and non-repair Schwann cells. Cell Mol Neurobiol. 2023;43:2165–2178. doi: 10.1007/s10571-022-01295-4 EDN: DYKCLC
  46. Yu P, Zhang G, Hou B, et al. Effects of ECM proteins (laminin, fibronectin, and type IV collagen) on the biological behavior of Schwann cells and their roles in the process of remyelination after peripheral nerve injury. Front Bioeng Biotechnol. 2023;11:1133718. doi: 10.3389/fbioe.2023.1133718 EDN: AETWZB
  47. Naughton SX, Terry AV Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology. 2018;408:101–112. doi: 10.1016/j.tox.2018.08.011 EDN: YJNVGH
  48. Alahakoon C, Dassanayake TL, Gawarammana IB, et al. Prediction of organophosphorus insecticide-induced intermediate syndrome with stimulated concentric needle single fibre electromyography. Plos One.2018;13(9):e0203596. doi: 10.1371/journal.pone.0203596
  49. Silva MH. Effects of low-dose chlorpyrifos on neurobehavior and potential mechanisms: A review of studies in rodents, zebrafish, and Caenorhabditis elegans. Birth Defects Res. 2020;112(6):445–479. doi: 10.1002/bdr2.1661 EDN: XFAZUW
  50. Tsai Y-H, Lein PJ. Mechanisms of organophosphate neurotoxicity. Curr Opin Toxicol. 2021;26:49–60. doi: 10.1016/j.cotox.2021.04.002 EDN: GYDQTE
  51. Kondakala SR, Henein L, McDevitt E, et al. Effects of chlorpyrifos on non-cholinergic toxicity endpoints in immortalized and primary rat hepatocytes under normal and hepatosteatotic conditions. Toxicol In Vitro. 2022;80:105329. doi: 10.1016/j.tiv.2022.105329 DN: WXPRFW
  52. Seil FJ. Myelin antigens and antimyelin antibodies. Antibodies (Basel). 2018;7(1):2. doi: 10.3390/antib7010002
  53. Wu G, Wen X, Kuang R, et al. Roles of macrophages and their interactions with Schwann cells after peripheral nerve injury. Cell Mol Neurobiol. 2024;44:11. doi: 10.1007/s10571-023-01442-5 EDN: QXVVEO
  54. Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat. 2022;241(5):1235–1258. doi: 10.1111/joa.13606 EDN: DCYSSK
  55. Stazi M, D’Este G, Mattarei A, et al. An agonist of the CXCR4 receptor accelerates the recovery from the peripheral neuroparalysis induced by Taipan snake envenomation. PLoS Negl Trop Dis. 2020;14(9):e0008547. doi: 10.1371/journal.pntd.0008547 EDN: KSBKMM
  56. Torigoe K. Axonal regrowth under release of myelin-associated glycoprotein: Chemotaxis by pioneer Schwann cells and Cajal’s gigantic clubs. Microscopy (Oxf). 2023:dfad046. doi: 10.1093/jmicro/dfad046 EDN: RJSKNV
  57. Raasakka A, Kursula P. Flexible players within the sheaths: the intrinsically disordered proteins of myelin in health and disease. Cells. 2020;9(2):470. doi: 10.3390/cells9020470 EDN: KFQBYG
  58. Gonçalves NP, Jager SE, Richner M, et al. Schwann cell p75 neurotrophin receptor modulates small fiber degeneration in diabetic neuropathy. Glia. 2020;68(12):2725–2743. doi: 10.1002/glia.23881 EDN: LOXAWE
  59. Follis RM, Tep C, Genaro-Mattos TC, et al. Metabolic control of sensory neuron survival by the p75 neurotrophin receptor in Schwann cells. J Neurosci. 2021;41(42):8710–8724. doi: 10.1523/JNEUROSCI.3243-20.2021 EDN: NCFNNQ
  60. Volkhina IV, Vinnikov IS. Clinical significance of nerve growth factor (review of literature). Clinical laboratory diagnostics. 2023;68(6):333–340. doi: 10.51620/0869-2084-2023-68-6-333-340 EDN: VFEOHO
  61. Pandey S, Mudgal J. A review on the role of endogenous neurotrophins and Schwann cells in axonal regeneration. J Neuroimmune Pharmacol. 2022;17(3–4):398–408. doi: 10.1007/s11481-021-10034-3 EDN: NNLJUY
  62. Qu W-R, Zhu Zh, Liu J, et al. Interaction between Schwann cells and other cells during repair of peripheral nerve injury. Neural Regen Res. 2021;16(1):93–98. doi: 10.4103/1673-5374.286956 EDN: RVDBWR
  63. Meng D-H, Zou J-P, Xu Q-T, et al. Endothelial cells promote the proliferation and migration of Schwann cells. Ann Transl Med. 2022;10(2):78. doi: 10.21037/atm-22-81 EDN: HUNPEH
  64. Xu H-Y, Wang P, Sun Y-J, et al. Activation of neuroregulin 1/ErbB signaling is involved in the development of TOCP-induced delayed neuropathy. Front Mol Neurosci. 2018;11:129. doi: 10/3389/fnmol.2018.00129
  65. El Souri M, Fornasary BE, Morano M, et al. Soluble neuregulin 1 down-regulated myelination genes in Shwann cells. Front Mol Neurosci. 2018;11:157. doi: 10.3389/fnmol.2018.00157
  66. Gavini CK, Bonomo R, Mansuy-Aubert V. Neuronal LXR regulates neuregulin 1 expression and sciatic nerve-associated cell signaling in western diet-fed rodents. Sci Rep. 2020;10(1):6396. doi: 10.1038/s41598-020-63357-1 EDN: BDACUP
  67. Tilley DM, Vallejo R, Vetri F, et al. Regulation of expression of extracellular matrix proteins by differential target multiplexed spinal cord stimulation (SCS) and traditional low-rate SCS in a rat nerve injury model. Biology (Basel). 2023;12(4):537. doi: 10.3390/biology12040537 EDN: NPRTOT
  68. Subczynski WK, Pasenkiewicz-Gierula M, Widomska J, et al. High cholesterol/low cholesterol: effects in biological membranes: a review. Cell Biochem Biophys. 2017;75(3–4):369–385. doi: 10.1007/s12013-017-0792-7 EDN: YETCOX
  69. Berghoff SA, Spieth L, Sun T, et al. Neuronal cholesterol synthesis is essential for repair of chronically demyelinated lesions in mice. Cell Rep. 2021;37(4):109889. doi: 10.1016/j.celrep.2021.109889 EDN: QFRPKH
  70. Placheta-Györi E, Brandstetter LM, Zemann-Schälss J, et al. Myelination, axonal loss and Schwann cell characteristics in axonal polyneuropathy compared to controls. PLoS One. 2021;16(11):e0259654. doi: 10.1371/journal.pone.0259654 EDN: BYREUE
  71. Robb EL, Regina AC, Baker MB. Organophosphate toxicity. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2023 Nov 12.
  72. Morgan JP, Penovich P. Jamaica ginger paralysis. Forty-seven-year follow-up. Arch Neurol. 1978;35(8):530–532. doi: 10.1001/archneur.1978.00500320050011
  73. Yu J-R, Hou Y-Ch, Fu J-F, et al. Outcomes of elderly patients with organophosphate intoxication. Sci Rep. 2021;11:11615. doi: 10.1038/s41598-021-91230-2 EDN: UNAONU
  74. Farnham A, Fuhrimann S, Staudacher P, et al. Long term neurological and psychological distress symptoms among smallholder farmers in Costa Rica with a history of acute pesticide poisoning. Int J Environ Res Public Health. 2021;18(17):9021. doi: 10.3390/ ijerph18179021 EDN: BHIKFI
  75. Thammachi A, Sapbamrer R, Rohitratta J, et al. Difference in knowledge, awareness, practice, and health symptoms in farmers who applied organophosphates and pyrethroids on farms. Front Public Health. 2022;10:802–810. doi: 10.3389/fpubh.2022.802810
  76. Aishwarya KM, Zanzmera P, Patel J, et al. Organophosphate compound poisoning — an unusual presentation as guillain barre syndrome. Ann Indian Acad Neurol. 2023;26(5):845–847. doi: 10.4103/aian.aian_459_23 EDN: MRBJAH
  77. Ergün SS, Oztürk K, Su O, et al. Delayed neuropathy due to organophosphate insecticide injection in an attempt to commit suicide. Hand (NY). 2009;4(1):84–87. doi: 10.1007/s11552-008-9126-y
  78. Kobayashi S, Okubo R, Ugawa Y. Delayed polyneuropathy induced by organophosphate poisoning. Intern Med. 2017;56(14):1903–1905. doi: 10.2169/internalmedicine.56.7921
  79. Gautam S, Sapkota S, Ojha R, et al. Delayed myelopathy after organophosphate intoxication: A case report. SAGE Open Med Case Rep. 2022;10:2050313X221104309. doi: 10.1177/2050313X221104309
  80. Richardson RJ, Fink JK, Glynn P, et al. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). Adv Neurotoxicol. 2020;4:1–78. doi: 10.1016/bs.ant.2020.01.001 EDN: VQZHVZ
  81. Kretzschmar D. PNPLA6/NTE, an evolutionary conserved phospholipase linked to a group of complex human diseases. Metabolites. 2022;12(4):284. doi: 10.3390/metabo12040284 EDN: ITTSRZ
  82. Melentev PA, Agranovich OE, Sarantseva SV. Human diseases associated with NTE gene. Ecological genetics. 2020;18(2):229–242. doi: 10.17816/ecogen16327 EDN: YPGGPQ
  83. McFerrin J, Patton BL, Sunderhaus ER, et al. NTE/PNPLA6 is expressed in mature Schwann cells and is required for glial ensheathment of Remak fibers. Glia. 2017;65(5):804–816. doi: 10.1002/glia.23127
  84. Emerick GL, DeOliveira GH, Oliveira RV, Ehrich M. Comparative in vitro study of the inhibition of human and hen esterases by methamidophos enantiomers. Toxicology. 2012;292(2–3):145–150. doi: 10.1016/j.tox.2011.12.004
  85. Emerick GL, Fernandes LS, de Paula ES, et al. In vitro study of the neuropathic potential of the organophosphorus compounds fenamiphos and profenofos: Comparison with mipafox and paraoxon. Toxicol In Vitro. 2015;29(5):1079–1087. doi: 10.1016/j.tiv.2015.04.009 EDN: USCPVX
  86. Wu W, Wang P. Computational modeling study of the binding of aging and non-aging inhibitors with neuropathy target esterase. Molecules. 2023;28(23):7747. doi: 10.3390/molecules28237747 EDN: CQBWIL
  87. Sunderhaus ER, Law AD, Kretzschmar D. Disease-associated PNPLA6 mutations maintain partial functions when analyzed in drosophila. Front Neurosci. 2019;13:1207. doi: 10.3389/fnins.2019.01207
  88. Melentev PA, Ryabova EV, Surina NV, et al. Loss of swiss cheese in neurons contributes to neurodegeneration with mitochondria abnormalities, reactive oxygen species acceleration and accumulation of lipid droplets in drosophila brain. Int J Mol Sci. 2021;22(15):8275. doi: 10.3390/ijms22158275 EDN: SORQPS
  89. Chang P, He L, Wang Y, et al. Characterization of the interaction of neuropathy target esterase with the endoplasmic reticulum and lipid droplets. Biomolecules. 2019;9(12):848. doi: 10.3390/biom9120848 EDN: OXUPPU
  90. Guignet M, Dhakal K, Flannery BM, et al. Persistent behavior deficits, neuroinflammation, and oxidative stress in a rat model of acute organophosphate intoxication. Neurobiol Dis. 2020;133:104431. doi: 10.1016/j.nbd.2019.03.019 EDN: FNKAPU
  91. Tsai Y-H, Lein PJ. Mechanisms of organophosphate neurotoxicity. Curr Opin Toxicol. 2021;26:49–60. doi: 10.1016/j.cotox.2021.04.002 EDN: GYDQTE
  92. Costas-Ferreira C, Faro LR. Systematic review of calcium channels and intracellular calcium signaling: relevance to pesticide neurotoxicity. Int J Mol Sci. 2021;22(24):13376. doi: 10.3390/ijms222413376 EDN: VHIEWO
  93. Contreras E, Bolívar S, Navarro X, Udina E. New insights into peripheral nerve regeneration: the role of secretomes. Exp Neurol. 2022;354:114069. doi: 10.1016/j.expneurol.2022.114069 EDN: EZAOVE
  94. Almami IS, Aldubayan MA, Felemban SG, et al. Neurite outgrowth inhibitory levels of organophosphates induce tissue transglutaminase activity in differentiating N2a cells: evidence for covalent adduct formation. Arch Toxicol. 2020;94(11):3861–3875. doi: 10.1007/s00204-020-02852-w EDN: YQMVEW
  95. Aldubayan MA, Almami IS, Felemban SG, et al. Organophosphates modulate tissue transglutaminase activity in differentiated C6 neural cells. Eur Rev Med Pharmacol Sci. 2022;26(1):168–182. doi: 10.26355/eurrev_202201_27766
  96. Zhang XF, Chen J, Faltynek CR, et al. Transient receptor potential A1 mediates an osmotically activated ion channel. Eur J Neurosci. 2008;27(3):605–611. doi: 10.1111/j.1460-9568.2008.06030.x
  97. Ding Q, Fang S, Chen Xat, et al. TRPA1 channel mediates organophosphate-induced delayed neuropathy. Cell Discov. 2017;3:17024. doi: 10.1038/celldisc.2017.24
  98. Xu X-Y, Wang P, Sun Y-J, et al. Autophagy in tri-o-cresyl phosphate-induced delayed neurotoxicity. J Neuropathol Exp Neurol. 2017;76(1):52–60. doi: 10.1093/jnen/nlw108 EDN: YHHRHE
  99. Wang P, Yang M, Jiang L, et al. A fungicide miconazole ameliorates tri-o-cresyl phosphate-induced demyelination through inhibition of ErbB/Akt pathway. Neuropharmacology. 2019;148:31–39. doi: 10.1016/j.neuropharm.2018.12.015
  100. Farkhondeh T, Mehrpour O, Buhrmann C, et al. Organophosphorus compounds and MAPK signaling pathways. Int J Mol Sci. 2020;21(12):4258. doi: 10.3390/ijms21124258 EDN: NAYLHB
  101. Sule RO, Condon L, Gomes AV. A common feature of pesticides: oxidative stress-the role of oxidative stress in pesticide-induced toxicity. Oxid Med Cell Longev. 2022;2022:5563759. doi: 10.1155/2022/5563759 EDN: HTQQPP
  102. Tigges J, Worek F, Thiermann H, et al. Organophosphorus pesticides exhibit compound specific effects in rat precision-cut lung slices (PCLS): mechanisms involved in airway response, cytotoxicity, inflammatory activation and antioxidative defense. Arch Toxicol. 2022;96:321–334. doi: 10.1007/s00204-021-03186-x EDN: ZGGCRK
  103. Khani L, Martin L, Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. Sci Total Environ. 2023;897:165272. doi: 10.1016/j.scitotenv.2023.165272 EDN: HMTGYW
  104. Amar SK, Keri B, Donohue KB, et al. Cellular and molecular responses to ethyl-parathion in undifferentiated SH-SY5Y cells provide neurotoxicity pathway indicators for organophosphorus impacts. Toxicol Sci. 2023;191(2):285–295. doi: 10.1093/toxsci/kfac125 EDN: YRSLMC
  105. Brenet A, Somkhit J, Hassan-Abdi R, et al. Preclinical zebrafish model for organophosphorus intoxication: neuronal hyperexcitation, behavioral abnormalities and subsequent brain damages. bioRxiv. 2019.12.15.876649. doi: 10.1101/2019.12.15.876649 Now published in Scientific Reportes doi: 10.1038/s41598-020-76056-8
  106. Hawkey AB, Glazer L, Dean C, et al. Adult exposure to insecticides causes persistent behavioral and neurochemical alterations in zebrafish. Neurotoxicol Teratol. 2020;78:106853. doi: 10.1016/j.ntt.2019.106853 EDN: MTLLNX
  107. Ribeiro-Carvalho A, Lima CS, Dutra-Tavares AC, et al. Mood-related behavioral and neurochemical alterations in mice exposed to low chlorpyrifos levels during the brain growth spurt. PLoS One. 2020;15(10):e0239017. doi: 10.1371/journal.pone.0239017 EDN: NYGKXF
  108. Poopal RK, He Y, Zhao R, et al. Organophosphorus-based chemical additives induced behavioral changes in zebrafish (Danio rerio): Swimming activity is a sensitive stress indicator. Neurotoxicol Teratol. 2021;83:106945. doi: 10.1016/j.ntt.2020.106945 EDN: MZTWTI
  109. Neylon J, Fuller JN, van der Poel C, et al. Organophosphate insecticide toxicity in neural development, cognition, behaviour and degeneration: insights from zebrafish. J Dev Biol. 2022;10(4):49. doi: 10.3390/jdb10040049 EDN: ZSDBCN
  110. Boyda J, Hawkey AB, Holloway ZR, et al. The organophosphate insecticide diazinon and aging: Neurobehavioral and mitochondrial effects in zebrafish exposed as embryos or during aging. Neurotoxicol Teratol. 2021;87:107011. doi: 10.1016/j.ntt.2021.107011 EDN: NWJIGB
  111. Khatib I, Horyn O, Bodnar O, et al. Molecular and biochemical evidence of the toxic effects of terbuthylazine and malathion in zebrafish. Animals (Basel). 2023;13(6):1029. doi: 10.3390/ani13061029 EDN: GORGZN
  112. Shi, Q, Yang H, Chen Y, et al. Developmental neurotoxicity of trichlorfon in zebrafish larvae. Int J Mol Sci. 2023;24(13):11099. doi: 10.3390/ijms241311099 EDN: AKFWXI
  113. Falfushynska H, Khatib I, Kasianchuk N, et al. Toxic effects and mechanisms of common pesticides (Roundup and chlorpyrifos) and their mixtures in a zebrafish model (Danio rerio). Sci Total Environ. 2022;833:155236. doi: 10.1016/j.scitotenv.2022.155236 EDN: KPKTOX
  114. Kuppuswamy JM, Seetharaman B. Monocrotophos based pesticide alters the behavior response associated with oxidative indices and transcription of genes related ro apoptosis in adult zebrafish (Danio rerio) brain. Biomed Pharmacol J. 2020;13(3). doi: 10.13005/bpj/1998 EDN: RQDELT
  115. Tallat S, Hussien R, Mohamed RH, et al. Caspases as prognostic markers and mortality predictors in acute organophosphorus poisoning. J Genet Eng Biotechnol. 2020;18(1):10. doi: 10.1186/s43141-020-00024-y EDN: KQOVZN
  116. Somkhit J, Yanicostas C, Soussi-Yanicostas N. Microglia remodelling and neuroinflammation parallel neuronal hyperactivation following acute organophosphate poisoning. Int J Mol Sci. 2022;23(15):8240. doi: 10.3390/ijms23158240 EDN: VMNOYY
  117. Maupu C, Enderlin J, Igert A, et al. Diisopropylfluorophosphate-induced status epilepticus drives complex glial cell phenotypes in adult male mice. Neurobiol Dis. 2021;152:105276. doi: 10.1016/j.nbd.2021.105276 EDN: ZQHOAQ
  118. Faria M, Fuertes I, Prats E, et al. Analysis of the neurotoxic effects of neuropathic organophosphorus compounds in adult zebrafish. ci Rep. 2018;8(1):4844. doi: 10.1038/s41598-018-22977-4 EDN: VFFEJK

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).