Органофосфат-индуцированная отсроченная нейропатия: нерешенная проблема?
- Авторы: Саватеева-Любимова Т.Н.1, Сивак К.В.1, Стосман К.И.1
-
Учреждения:
- Научно-исследовательский институт гриппа им. А.А. Смородинцева
- Выпуск: Том 25, № 3 (2025)
- Страницы: 56-68
- Раздел: Аналитические обзоры
- URL: https://journals.rcsi.science/MAJ/article/view/380136
- DOI: https://doi.org/10.17816/MAJ641750
- EDN: https://elibrary.ru/BZNHAE
- ID: 380136
Цитировать
Аннотация
В работе представлен обзор литературы за последние годы, посвященный отсроченной периферической нейропатии, обусловленной острым или хроническим низкодозовым воздействием фосфорорганическими соединениями (Organophosphate-induced delayed neuropathy, OPIDN). В обзоре рассмотрены особенности клинического течения заболевания, характеризующиеся наличием длительного латентного периода развития патологии после непосредственного воздействия токсикантами, и приведены примеры массовых и суицидальных отравлений. Описан морфологический субстрат OPIDN, характеризующийся отеком дистальных областей крупных аксонов, а также разобщением мембран миелиновых оболочек и впоследствии дегенерацией нервных волокон по типу валлеровской. Обсуждены роль шванновских клеток в регенерации поврежденных аксонов и клеточно-молекулярные механизмы, лежащие в основе передачи сигналов между аксоном и шванновской клеткой. Приведены основные гипотезы о нехолинергических механизмах патогенеза OPIDN. Особое внимание уделено роли нейротоксичной эстеразы как основной молекулярной мишени действия органофосфатов, системное ингибирование которой в комплексе с реакцией «старения» инициирует процесс развития OPIDN. Наряду с участием нейротоксичной эстеразы рассматривается потенциальная роль других молекулярных мишеней воздействия органофосфатов, окислительного стресса, нарушения механизмов регуляции кальция, нейровоспаление. Приведены примеры подходов к экспериментальному моделированию OPIDN с целью изучения механизмов ее развития как in vivo, так и in vitro.
Об авторах
Татьяна Николаевна Саватеева-Любимова
Научно-исследовательский институт гриппа им. А.А. Смородинцева
Email: drugs_safety@mail.ru
ORCID iD: 0000-0003-4516-3308
SPIN-код: 3543-6799
д-р мед. наук, профессор
Россия, Санкт-ПетербургКонстантин Владимирович Сивак
Научно-исследовательский институт гриппа им. А.А. Смородинцева
Автор, ответственный за переписку.
Email: kvsivak@gmail.com
ORCID iD: 0000-0003-4064-5033
SPIN-код: 7426-8322
д-р биол. наук
Россия, Санкт-ПетербургКира Иосифовна Стосман
Научно-исследовательский институт гриппа им. А.А. Смородинцева
Email: labtox6@rambler.ru
ORCID iD: 0000-0001-7959-2376
SPIN-код: 8423-0170
канд. биол. наук
Россия, Санкт-ПетербургСписок литературы
- Castelli G, Desai KM, Cantone RE. Peripheral neuropathy: evaluation and differential diagnosis. Am Fam Physician. 2020;102(12):732–739.
- Pizova NV. Major metabolic and toxic polyneuropathies in clinical practice. Meditsinskiy sovet. 2021;(19):134–146. doi: 10.21518/2079-701X-2021-19-134-146 EDN: ZCAIAD
- Peters J, Staff NP. Update on toxic neuropathies. Curr Treat Options Neurol. 2022;24(5):203–216. doi: 10.1007/s11940-022-00716-5 EDN: QEYQOI
- Eskut N, Koskderelioglu A. Neurotoxic agents and peripheral neuropathy. In: Neurotoxicity – New Advances. IntechOpen; 2021. doi: 10.5772/intechopen.101103
- Smyth D, Kramarz C, Carr AS, et al. Toxic neuropathies: a practical approach. Pract Neurol. 2023;23(2):120–130. doi: 10.1136/pn-2022-003444 EDN: ICMNLK
- Kabdrakhmanova GB, Utepkalieva AP. The role of ecotoxicants in the development of neurotoxicosis. Medicinskij zhurnal Zapadnogo Kazahstana. 2018;57(1):29–35. EDN: XNKCKD
- Valentin WM. Toxic peripheral neuropathies: agents and mechanisms. Toxicol Pathol. 2020;48(1):152–173. doi: 10.1177/0192623319854326
- Boklazhenko EV, Bodienkova GM, Rusanova DV. Studies of interrelations between neurotrophic antibodies and individual neurophysiological indices in patients with professional chronic mercury intoxication at the post-exposure period. Medical immunology (Russia). 2019;21(6):1197–1202. doi: 10.15789/1563-0625-2019-6-1197-1202 EDN: REVXBX
- Staff NP. Peripheral neuropathies due to vitamin and mineral deficiencies, toxins, and medications. Continuum (Minneap Minn). 2020;26(5):1280–1298. doi: 10.1212/CON.0000000000000908 EDN: AMXMFF
- Bin-Jumah M, Abdel-Fattah AM, Saied EM, et al. Acrylamide-induced peripheral neuropathy: manifestations, mechanisms, and potential treatment modalities. Environ Sci Pollut Res Int. 2021;28(11):13031–13046. doi: 10.1007/s11356-020-12287-6 EDN: ONEMBJ
- Koszewicz M, Markowska K, Waliszewska-Prosol M, et al. The impact of chronic co-exposure to different heavy metals on small fibers of peripheral nerves. A study of metal industry workers. J Occup Med Toxicol. 2021;16(1):12. doi: 10.1186/s12995-021-00302-6 EDN: GZITSW
- Adeyinka A, Patel A, Kondamudi NP. Cholinergic Crisis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. 2025 Apr 6.
- Pannu AK, Bhalla A, Vishnu I, et al. Organophosphate induced delayed neuropathy after an acute cholinergic crisis in self-poisoning. Clin Toxicol. 2021;59(6):488–492. doi: 10.1080/15563650.2020.1832233 EDN: PDLLYZ
- Patel A, Chavan G, Nagpal AK. Navigating the neurological abyss: a comprehensive review of organophosphate poisoning complications. Cureus. 2024;16(2):e54422. doi: 10.7759/cureus.54422 DN: PVDYHL
- Nayak P, Mallick AK, Mishra SH, et al. Organophosphorus-induced toxic myeloneuropathy: series of three adolescent patients with short review. J Pediatr Neurosci. 2019;14(1):42–45. doi: 10.4103/jpn.JPN_45_18
- Khan A, Seth NH, Sharath H. Physical rehabilitation crucial in motor axonal neuropathy following organophosphorus poisoning: a case study. Cureus. 2024;16(2):e54145. doi: 10.7759/cureus.54145 EDN: VKTKHK
- Rao BRP, Mohanty L, Kampali H, et al. Organophosphate-induced delayed neuropathy: a rare case presentation. J Integr Med Res. 2024;2(1):33–36. doi: 10.4103/jimr.jimr_46_23 EDN: VHQKMY
- Koliatsos VE, Aleksandris AS. Wallerian degeneration as a therapeutic target in traumatic brain injury. Curr Opin Neurol. 2019;32(6):786–795. doi: 10.1097/WCO.0000000000000763
- Gajurel BP, Giri S, Poudel N, et al. Wallerian degeneration in the brain after organophosphorus poisoning: a case report. Ann Med Surg (Lond). 2023;85(4):926–930. doi: 10.1097/MS9.0000000000000102 EDN: DPIUDT
- Hervera A, De Virgiliis F, Palmisano I, et al. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol. 2018;20(3):307–319. doi: 10.1038/s41556-018-0039-x
- Rosell AL, Neukomm LJ. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol. 2019;9(8):190118. doi: 10.1098/rsob.190118
- Jessen KR, Mirsky Rh. The success and failure of the Schwann cell response to nerve injury. Front Cell Neurosci. 2019;13:33. doi: 10.3389/fncel.2019.00033
- Dahlin LB. The dynamics of nerve degeneration and regeneration in a healthy milieu and in diabetes. Int J Mol Sci. 2023;24(20):15241. doi: 10.3390/ijms242015241 EDN: JREZYA
- Jortner BS. Common structural lesions of the peripheral nervous system. Toxicol Pathol. 2020;48(1):96–104. doi: 10.1177/0192623319826068
- Nocera G, Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci. 2020;77(20):3977–3989. doi: 10.1007/s00018-020-03516-9 EDN: PEYVIO
- Balakrishnan A, Belfiore L, Chu TH, et al. Insights into the role and potential of Schwann cells for peripheral nerve repair from studies of development and injury. Front Mol Neurosci. 2021;13:608442. doi: 10.3389/fnmol.2020.608442 EDN: LOQPPO
- Stassart RM, Woodhoo A. Axo-glial interaction in the injured PNS. Dev Neurobiol. 2021;81(5):490–506. doi: 10.1002/dneu.22771 EDN: AOLWCG
- Endo T, Kadoya K, Suzuki T, et al. Mature but not developing Schwann cells promote axon regeneration after peripheral nerve injury. NPJ Regen Med. 2022;7(1):12. doi: 10.1038/s41536-022-00205-y
- Bosch-Queralt M, Fledrich R, Stassart RM. Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis. 2023;176:105952. doi: 10.1016/j.nbd.2022.105952 EDN: MYNBLZ
- Tian W, Czopka T, López-Schier H. Systemic loss of Sarm1 protects Schwann cells from chemotoxicity by delaying axon degeneration. Commun Biol. 2020;3(1):49. doi: 10.1038/s42003-020-0776-9 EDN: DJGGBB
- Bouçanova F, Chras R. Metabolic interaction between Shwann cells and axons under physiological and disease conditions. Front Cell Neurosci. 2020;14:148. doi: 10.3389/fncel.2020/00148
- McGonigal R, Campbell CI, Barrie JA, et al. Schwann cell nodal membrane disruption triggers bystander axonal degeneration in a Guillain–Barré syndrome mouse model. J Clin Invest. 2022;132(14):e158524. doi: 10.1172/JCI158524 EDN: LNYAQJ
- Manole E, Bastian AE, Oproiu AM, et al. Schwann cell plasticity in peripheral nerve regeneration after injury. In: Baloyannis JS, Rossi HF, Liu W, eds. Demyelination Disorders. IntechOpen; 2022. P. 1–20. doi: 10.5772/intechopen.91805
- Oliveira JT, Yanick C, Wein N, Gomez Limia CE. Neuron-Schwann cell interactions in peripheral nervous system homeostasis, disease, and preclinical treatment. Front Cell Neurosci. 2023;17:1248922. doi: 10.3389/fncel.2023.1248922 EDN: OUZRSP
- Poitelon Y, Kopec AM, Belin S. Myelin fat facts: an overview of lipids and fatty acid metabolism. Cells. 2020;9(4):812. doi: 10.3390/cells9040812 EDN: VCOVIA
- Kister A, Kister I. Overview of myelin, major myelin lipids, and myelin-associated proteins. Front Chem. 2023;10:1041961. doi: 10.3389/fchem.2022.1041961 EDN: MANEIF
- Petrova ES. Current views on Schwann cells: development, plasticity, functions. Journal of Evolutionary Biochemistry and Physiology. 2019;55(6):383–397. doi: 10/1134/S0044452919060068 EDN: DLTOBX
- Previtali SC. Peripheral nerve development and the pathogenesis of peripheral neuropathy: the sorting point. Neurotherapeutics. 2021;18(4):2156–2168. doi: 10.1007/s13311-021-01080-z EDN: EZKODC
- Ioghen O, Manole E, Gherghiceanu M, et al. Non-myelinating schwann cells in health and disease. In: Baloyannis JS, Rossi HF, Liu W, eds. Demyelination Disorders. IntechOpen; 2022. doi: 10.5772/intechopen.91930
- Gonias SL, Campana WM. Schwann cell extracellular vesicles: judging a book by its cover. Neural Regen Res. 2023;18(2):325–326. doi: 10.4103/1673-5374.346478 EDN: APYSEO
- Jessen KR, Arthur-Farraj P. Repair Schwann cell update: adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia. 2019;67(3):421–437. doi: 10.1002/glia.23532
- Rigoni M, Negro S. Signals orchestrating peripheral nerve repair. Cells. 2020;9(8):1768. doi: 10.3390/cells9081768 EDN: SIFHUO
- Reed CB, Feltri ML, Wilson ER. Peripheral glia diversity. J Anat. 2022;241(5):1219–1234. doi: 10.1111/joa.13484 EDN: QGSUZD
- Trolese MC, Scarpa C, Melfi V, et al. Boosting the peripheral immune response in the skeletal muscles improved motor function in ALS transgenic mice. Mol Ther. 2022;30(8):2760–2784. doi: 10.1016/j.ymthe.2022.04.018 EDN: OVEJRV
- Suzuki T, Kadoya K, Endo T, et al. Molecular and regenerative characterization of repair and non-repair Schwann cells. Cell Mol Neurobiol. 2023;43:2165–2178. doi: 10.1007/s10571-022-01295-4 EDN: DYKCLC
- Yu P, Zhang G, Hou B, et al. Effects of ECM proteins (laminin, fibronectin, and type IV collagen) on the biological behavior of Schwann cells and their roles in the process of remyelination after peripheral nerve injury. Front Bioeng Biotechnol. 2023;11:1133718. doi: 10.3389/fbioe.2023.1133718 EDN: AETWZB
- Naughton SX, Terry AV Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology. 2018;408:101–112. doi: 10.1016/j.tox.2018.08.011 EDN: YJNVGH
- Alahakoon C, Dassanayake TL, Gawarammana IB, et al. Prediction of organophosphorus insecticide-induced intermediate syndrome with stimulated concentric needle single fibre electromyography. Plos One.2018;13(9):e0203596. doi: 10.1371/journal.pone.0203596
- Silva MH. Effects of low-dose chlorpyrifos on neurobehavior and potential mechanisms: A review of studies in rodents, zebrafish, and Caenorhabditis elegans. Birth Defects Res. 2020;112(6):445–479. doi: 10.1002/bdr2.1661 EDN: XFAZUW
- Tsai Y-H, Lein PJ. Mechanisms of organophosphate neurotoxicity. Curr Opin Toxicol. 2021;26:49–60. doi: 10.1016/j.cotox.2021.04.002 EDN: GYDQTE
- Kondakala SR, Henein L, McDevitt E, et al. Effects of chlorpyrifos on non-cholinergic toxicity endpoints in immortalized and primary rat hepatocytes under normal and hepatosteatotic conditions. Toxicol In Vitro. 2022;80:105329. doi: 10.1016/j.tiv.2022.105329 DN: WXPRFW
- Seil FJ. Myelin antigens and antimyelin antibodies. Antibodies (Basel). 2018;7(1):2. doi: 10.3390/antib7010002
- Wu G, Wen X, Kuang R, et al. Roles of macrophages and their interactions with Schwann cells after peripheral nerve injury. Cell Mol Neurobiol. 2024;44:11. doi: 10.1007/s10571-023-01442-5 EDN: QXVVEO
- Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat. 2022;241(5):1235–1258. doi: 10.1111/joa.13606 EDN: DCYSSK
- Stazi M, D’Este G, Mattarei A, et al. An agonist of the CXCR4 receptor accelerates the recovery from the peripheral neuroparalysis induced by Taipan snake envenomation. PLoS Negl Trop Dis. 2020;14(9):e0008547. doi: 10.1371/journal.pntd.0008547 EDN: KSBKMM
- Torigoe K. Axonal regrowth under release of myelin-associated glycoprotein: Chemotaxis by pioneer Schwann cells and Cajal’s gigantic clubs. Microscopy (Oxf). 2023:dfad046. doi: 10.1093/jmicro/dfad046 EDN: RJSKNV
- Raasakka A, Kursula P. Flexible players within the sheaths: the intrinsically disordered proteins of myelin in health and disease. Cells. 2020;9(2):470. doi: 10.3390/cells9020470 EDN: KFQBYG
- Gonçalves NP, Jager SE, Richner M, et al. Schwann cell p75 neurotrophin receptor modulates small fiber degeneration in diabetic neuropathy. Glia. 2020;68(12):2725–2743. doi: 10.1002/glia.23881 EDN: LOXAWE
- Follis RM, Tep C, Genaro-Mattos TC, et al. Metabolic control of sensory neuron survival by the p75 neurotrophin receptor in Schwann cells. J Neurosci. 2021;41(42):8710–8724. doi: 10.1523/JNEUROSCI.3243-20.2021 EDN: NCFNNQ
- Volkhina IV, Vinnikov IS. Clinical significance of nerve growth factor (review of literature). Clinical laboratory diagnostics. 2023;68(6):333–340. doi: 10.51620/0869-2084-2023-68-6-333-340 EDN: VFEOHO
- Pandey S, Mudgal J. A review on the role of endogenous neurotrophins and Schwann cells in axonal regeneration. J Neuroimmune Pharmacol. 2022;17(3–4):398–408. doi: 10.1007/s11481-021-10034-3 EDN: NNLJUY
- Qu W-R, Zhu Zh, Liu J, et al. Interaction between Schwann cells and other cells during repair of peripheral nerve injury. Neural Regen Res. 2021;16(1):93–98. doi: 10.4103/1673-5374.286956 EDN: RVDBWR
- Meng D-H, Zou J-P, Xu Q-T, et al. Endothelial cells promote the proliferation and migration of Schwann cells. Ann Transl Med. 2022;10(2):78. doi: 10.21037/atm-22-81 EDN: HUNPEH
- Xu H-Y, Wang P, Sun Y-J, et al. Activation of neuroregulin 1/ErbB signaling is involved in the development of TOCP-induced delayed neuropathy. Front Mol Neurosci. 2018;11:129. doi: 10/3389/fnmol.2018.00129
- El Souri M, Fornasary BE, Morano M, et al. Soluble neuregulin 1 down-regulated myelination genes in Shwann cells. Front Mol Neurosci. 2018;11:157. doi: 10.3389/fnmol.2018.00157
- Gavini CK, Bonomo R, Mansuy-Aubert V. Neuronal LXR regulates neuregulin 1 expression and sciatic nerve-associated cell signaling in western diet-fed rodents. Sci Rep. 2020;10(1):6396. doi: 10.1038/s41598-020-63357-1 EDN: BDACUP
- Tilley DM, Vallejo R, Vetri F, et al. Regulation of expression of extracellular matrix proteins by differential target multiplexed spinal cord stimulation (SCS) and traditional low-rate SCS in a rat nerve injury model. Biology (Basel). 2023;12(4):537. doi: 10.3390/biology12040537 EDN: NPRTOT
- Subczynski WK, Pasenkiewicz-Gierula M, Widomska J, et al. High cholesterol/low cholesterol: effects in biological membranes: a review. Cell Biochem Biophys. 2017;75(3–4):369–385. doi: 10.1007/s12013-017-0792-7 EDN: YETCOX
- Berghoff SA, Spieth L, Sun T, et al. Neuronal cholesterol synthesis is essential for repair of chronically demyelinated lesions in mice. Cell Rep. 2021;37(4):109889. doi: 10.1016/j.celrep.2021.109889 EDN: QFRPKH
- Placheta-Györi E, Brandstetter LM, Zemann-Schälss J, et al. Myelination, axonal loss and Schwann cell characteristics in axonal polyneuropathy compared to controls. PLoS One. 2021;16(11):e0259654. doi: 10.1371/journal.pone.0259654 EDN: BYREUE
- Robb EL, Regina AC, Baker MB. Organophosphate toxicity. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2023 Nov 12.
- Morgan JP, Penovich P. Jamaica ginger paralysis. Forty-seven-year follow-up. Arch Neurol. 1978;35(8):530–532. doi: 10.1001/archneur.1978.00500320050011
- Yu J-R, Hou Y-Ch, Fu J-F, et al. Outcomes of elderly patients with organophosphate intoxication. Sci Rep. 2021;11:11615. doi: 10.1038/s41598-021-91230-2 EDN: UNAONU
- Farnham A, Fuhrimann S, Staudacher P, et al. Long term neurological and psychological distress symptoms among smallholder farmers in Costa Rica with a history of acute pesticide poisoning. Int J Environ Res Public Health. 2021;18(17):9021. doi: 10.3390/ ijerph18179021 EDN: BHIKFI
- Thammachi A, Sapbamrer R, Rohitratta J, et al. Difference in knowledge, awareness, practice, and health symptoms in farmers who applied organophosphates and pyrethroids on farms. Front Public Health. 2022;10:802–810. doi: 10.3389/fpubh.2022.802810
- Aishwarya KM, Zanzmera P, Patel J, et al. Organophosphate compound poisoning — an unusual presentation as guillain barre syndrome. Ann Indian Acad Neurol. 2023;26(5):845–847. doi: 10.4103/aian.aian_459_23 EDN: MRBJAH
- Ergün SS, Oztürk K, Su O, et al. Delayed neuropathy due to organophosphate insecticide injection in an attempt to commit suicide. Hand (NY). 2009;4(1):84–87. doi: 10.1007/s11552-008-9126-y
- Kobayashi S, Okubo R, Ugawa Y. Delayed polyneuropathy induced by organophosphate poisoning. Intern Med. 2017;56(14):1903–1905. doi: 10.2169/internalmedicine.56.7921
- Gautam S, Sapkota S, Ojha R, et al. Delayed myelopathy after organophosphate intoxication: A case report. SAGE Open Med Case Rep. 2022;10:2050313X221104309. doi: 10.1177/2050313X221104309
- Richardson RJ, Fink JK, Glynn P, et al. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). Adv Neurotoxicol. 2020;4:1–78. doi: 10.1016/bs.ant.2020.01.001 EDN: VQZHVZ
- Kretzschmar D. PNPLA6/NTE, an evolutionary conserved phospholipase linked to a group of complex human diseases. Metabolites. 2022;12(4):284. doi: 10.3390/metabo12040284 EDN: ITTSRZ
- Melentev PA, Agranovich OE, Sarantseva SV. Human diseases associated with NTE gene. Ecological genetics. 2020;18(2):229–242. doi: 10.17816/ecogen16327 EDN: YPGGPQ
- McFerrin J, Patton BL, Sunderhaus ER, et al. NTE/PNPLA6 is expressed in mature Schwann cells and is required for glial ensheathment of Remak fibers. Glia. 2017;65(5):804–816. doi: 10.1002/glia.23127
- Emerick GL, DeOliveira GH, Oliveira RV, Ehrich M. Comparative in vitro study of the inhibition of human and hen esterases by methamidophos enantiomers. Toxicology. 2012;292(2–3):145–150. doi: 10.1016/j.tox.2011.12.004
- Emerick GL, Fernandes LS, de Paula ES, et al. In vitro study of the neuropathic potential of the organophosphorus compounds fenamiphos and profenofos: Comparison with mipafox and paraoxon. Toxicol In Vitro. 2015;29(5):1079–1087. doi: 10.1016/j.tiv.2015.04.009 EDN: USCPVX
- Wu W, Wang P. Computational modeling study of the binding of aging and non-aging inhibitors with neuropathy target esterase. Molecules. 2023;28(23):7747. doi: 10.3390/molecules28237747 EDN: CQBWIL
- Sunderhaus ER, Law AD, Kretzschmar D. Disease-associated PNPLA6 mutations maintain partial functions when analyzed in drosophila. Front Neurosci. 2019;13:1207. doi: 10.3389/fnins.2019.01207
- Melentev PA, Ryabova EV, Surina NV, et al. Loss of swiss cheese in neurons contributes to neurodegeneration with mitochondria abnormalities, reactive oxygen species acceleration and accumulation of lipid droplets in drosophila brain. Int J Mol Sci. 2021;22(15):8275. doi: 10.3390/ijms22158275 EDN: SORQPS
- Chang P, He L, Wang Y, et al. Characterization of the interaction of neuropathy target esterase with the endoplasmic reticulum and lipid droplets. Biomolecules. 2019;9(12):848. doi: 10.3390/biom9120848 EDN: OXUPPU
- Guignet M, Dhakal K, Flannery BM, et al. Persistent behavior deficits, neuroinflammation, and oxidative stress in a rat model of acute organophosphate intoxication. Neurobiol Dis. 2020;133:104431. doi: 10.1016/j.nbd.2019.03.019 EDN: FNKAPU
- Tsai Y-H, Lein PJ. Mechanisms of organophosphate neurotoxicity. Curr Opin Toxicol. 2021;26:49–60. doi: 10.1016/j.cotox.2021.04.002 EDN: GYDQTE
- Costas-Ferreira C, Faro LR. Systematic review of calcium channels and intracellular calcium signaling: relevance to pesticide neurotoxicity. Int J Mol Sci. 2021;22(24):13376. doi: 10.3390/ijms222413376 EDN: VHIEWO
- Contreras E, Bolívar S, Navarro X, Udina E. New insights into peripheral nerve regeneration: the role of secretomes. Exp Neurol. 2022;354:114069. doi: 10.1016/j.expneurol.2022.114069 EDN: EZAOVE
- Almami IS, Aldubayan MA, Felemban SG, et al. Neurite outgrowth inhibitory levels of organophosphates induce tissue transglutaminase activity in differentiating N2a cells: evidence for covalent adduct formation. Arch Toxicol. 2020;94(11):3861–3875. doi: 10.1007/s00204-020-02852-w EDN: YQMVEW
- Aldubayan MA, Almami IS, Felemban SG, et al. Organophosphates modulate tissue transglutaminase activity in differentiated C6 neural cells. Eur Rev Med Pharmacol Sci. 2022;26(1):168–182. doi: 10.26355/eurrev_202201_27766
- Zhang XF, Chen J, Faltynek CR, et al. Transient receptor potential A1 mediates an osmotically activated ion channel. Eur J Neurosci. 2008;27(3):605–611. doi: 10.1111/j.1460-9568.2008.06030.x
- Ding Q, Fang S, Chen Xat, et al. TRPA1 channel mediates organophosphate-induced delayed neuropathy. Cell Discov. 2017;3:17024. doi: 10.1038/celldisc.2017.24
- Xu X-Y, Wang P, Sun Y-J, et al. Autophagy in tri-o-cresyl phosphate-induced delayed neurotoxicity. J Neuropathol Exp Neurol. 2017;76(1):52–60. doi: 10.1093/jnen/nlw108 EDN: YHHRHE
- Wang P, Yang M, Jiang L, et al. A fungicide miconazole ameliorates tri-o-cresyl phosphate-induced demyelination through inhibition of ErbB/Akt pathway. Neuropharmacology. 2019;148:31–39. doi: 10.1016/j.neuropharm.2018.12.015
- Farkhondeh T, Mehrpour O, Buhrmann C, et al. Organophosphorus compounds and MAPK signaling pathways. Int J Mol Sci. 2020;21(12):4258. doi: 10.3390/ijms21124258 EDN: NAYLHB
- Sule RO, Condon L, Gomes AV. A common feature of pesticides: oxidative stress-the role of oxidative stress in pesticide-induced toxicity. Oxid Med Cell Longev. 2022;2022:5563759. doi: 10.1155/2022/5563759 EDN: HTQQPP
- Tigges J, Worek F, Thiermann H, et al. Organophosphorus pesticides exhibit compound specific effects in rat precision-cut lung slices (PCLS): mechanisms involved in airway response, cytotoxicity, inflammatory activation and antioxidative defense. Arch Toxicol. 2022;96:321–334. doi: 10.1007/s00204-021-03186-x EDN: ZGGCRK
- Khani L, Martin L, Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. Sci Total Environ. 2023;897:165272. doi: 10.1016/j.scitotenv.2023.165272 EDN: HMTGYW
- Amar SK, Keri B, Donohue KB, et al. Cellular and molecular responses to ethyl-parathion in undifferentiated SH-SY5Y cells provide neurotoxicity pathway indicators for organophosphorus impacts. Toxicol Sci. 2023;191(2):285–295. doi: 10.1093/toxsci/kfac125 EDN: YRSLMC
- Brenet A, Somkhit J, Hassan-Abdi R, et al. Preclinical zebrafish model for organophosphorus intoxication: neuronal hyperexcitation, behavioral abnormalities and subsequent brain damages. bioRxiv. 2019.12.15.876649. doi: 10.1101/2019.12.15.876649 Now published in Scientific Reportes doi: 10.1038/s41598-020-76056-8
- Hawkey AB, Glazer L, Dean C, et al. Adult exposure to insecticides causes persistent behavioral and neurochemical alterations in zebrafish. Neurotoxicol Teratol. 2020;78:106853. doi: 10.1016/j.ntt.2019.106853 EDN: MTLLNX
- Ribeiro-Carvalho A, Lima CS, Dutra-Tavares AC, et al. Mood-related behavioral and neurochemical alterations in mice exposed to low chlorpyrifos levels during the brain growth spurt. PLoS One. 2020;15(10):e0239017. doi: 10.1371/journal.pone.0239017 EDN: NYGKXF
- Poopal RK, He Y, Zhao R, et al. Organophosphorus-based chemical additives induced behavioral changes in zebrafish (Danio rerio): Swimming activity is a sensitive stress indicator. Neurotoxicol Teratol. 2021;83:106945. doi: 10.1016/j.ntt.2020.106945 EDN: MZTWTI
- Neylon J, Fuller JN, van der Poel C, et al. Organophosphate insecticide toxicity in neural development, cognition, behaviour and degeneration: insights from zebrafish. J Dev Biol. 2022;10(4):49. doi: 10.3390/jdb10040049 EDN: ZSDBCN
- Boyda J, Hawkey AB, Holloway ZR, et al. The organophosphate insecticide diazinon and aging: Neurobehavioral and mitochondrial effects in zebrafish exposed as embryos or during aging. Neurotoxicol Teratol. 2021;87:107011. doi: 10.1016/j.ntt.2021.107011 EDN: NWJIGB
- Khatib I, Horyn O, Bodnar O, et al. Molecular and biochemical evidence of the toxic effects of terbuthylazine and malathion in zebrafish. Animals (Basel). 2023;13(6):1029. doi: 10.3390/ani13061029 EDN: GORGZN
- Shi, Q, Yang H, Chen Y, et al. Developmental neurotoxicity of trichlorfon in zebrafish larvae. Int J Mol Sci. 2023;24(13):11099. doi: 10.3390/ijms241311099 EDN: AKFWXI
- Falfushynska H, Khatib I, Kasianchuk N, et al. Toxic effects and mechanisms of common pesticides (Roundup and chlorpyrifos) and their mixtures in a zebrafish model (Danio rerio). Sci Total Environ. 2022;833:155236. doi: 10.1016/j.scitotenv.2022.155236 EDN: KPKTOX
- Kuppuswamy JM, Seetharaman B. Monocrotophos based pesticide alters the behavior response associated with oxidative indices and transcription of genes related ro apoptosis in adult zebrafish (Danio rerio) brain. Biomed Pharmacol J. 2020;13(3). doi: 10.13005/bpj/1998 EDN: RQDELT
- Tallat S, Hussien R, Mohamed RH, et al. Caspases as prognostic markers and mortality predictors in acute organophosphorus poisoning. J Genet Eng Biotechnol. 2020;18(1):10. doi: 10.1186/s43141-020-00024-y EDN: KQOVZN
- Somkhit J, Yanicostas C, Soussi-Yanicostas N. Microglia remodelling and neuroinflammation parallel neuronal hyperactivation following acute organophosphate poisoning. Int J Mol Sci. 2022;23(15):8240. doi: 10.3390/ijms23158240 EDN: VMNOYY
- Maupu C, Enderlin J, Igert A, et al. Diisopropylfluorophosphate-induced status epilepticus drives complex glial cell phenotypes in adult male mice. Neurobiol Dis. 2021;152:105276. doi: 10.1016/j.nbd.2021.105276 EDN: ZQHOAQ
- Faria M, Fuertes I, Prats E, et al. Analysis of the neurotoxic effects of neuropathic organophosphorus compounds in adult zebrafish. ci Rep. 2018;8(1):4844. doi: 10.1038/s41598-018-22977-4 EDN: VFFEJK
Дополнительные файлы

