Therapeutic potential of exogenous mRNA encoding recombinant antibodies against viral pathogens

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Antibodies produced by the human immune system in response to vaccination or pathogen exposure represent an essential—and sometimes the only—means of combating viral infections. Scientific and technological advances have led to the emergence of a new class of antiviral agents in the biopharmaceutical market: therapeutic recombinant monoclonal antibodies. However, their potential is significantly limited due to low stability and aggregation of recombinant antibodies, as well as the high cost of their production and purification. Over the past decade, the technology of transient in vivo protein expression through the delivery of exogenous mRNA encoding the protein of interest into target cells has gained widespread adoption. Exogenous mRNAs encoding recombinant antibodies can provide stable, prolonged, and safe translation of both full-length antibodies and their various truncated forms. Moreover, mRNA technologies make it possible to develop new approaches to creating protective antibodies, such as intracellular or membrane-anchored antibodies targeted to specific cell types. In 2024 alone, more than one thousand scientific papers were published on the development and use of mRNA as vaccine and therapeutic agents. This review discusses current experimental mRNA-based therapeutics encoding antibodies that exhibit protective properties against viral pathogens.

About the authors

Sergey A. Klotchenko

Smorodintsev Research Institute of Influenza

Author for correspondence.
Email: fosfatik@mail.ru
ORCID iD: 0000-0003-0289-6560
SPIN-code: 2632-6195
Russian Federation, Saint Petersburg

Marina A. Plotnikova

Smorodintsev Research Institute of Influenza

Email: biomalinka@mail.ru
ORCID iD: 0000-0001-8196-3156
SPIN-code: 2986-9850
Russian Federation, Saint Petersburg

References

  1. Jin X, Ren J, Li R, et al. Global burden of upper respiratory infections in 204 countries and territories, from 1990 to 2019. EClinicalMedicine. 2021;37:100986. doi: 10.1016/j.eclinm.2021.100986 EDN: IFEDZD
  2. Roth GA, Picece VCTM, Ou BS, et al. Designing spatial and temporal control of vaccine responses. Nat Rev Mater. 2022;7(3):174–195. doi: 10.1038/s41578-021-00372-2 EDN: VBXTGB
  3. Mao T, Kim J, Peña-Hernández MA, et al. Intranasal neomycin evokes broad- spectrum antiviral immunity in the upper respiratory tract. Proc Natl Acad Sci U S A. 2024;121(18):e2319566121. doi: 10.1073/pnas.2319566121 EDN: ATDKNV
  4. Law GL, Korth MJ, Benecke AG, Katze MG. Systems virology: host-directed approaches to viral pathogenesis and drug targeting. Nat Rev Microbiol. 2013;11(7):455–466. doi: 10.1038/nrmicro3036 EDN: RNULCL
  5. Casadevall A, Dadachova E, Pirofski LA. Passive antibody therapy for infectious diseases. Nat Rev Microbiol. 2004;2(9):695–703. doi: 10.1038/nrmicro974
  6. Buss NA, Henderson SJ, McFarlane M, et al. Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol. 2012;12(5):615–622. doi: 10.1016/j.coph.2012.08.001
  7. Yuseff MI, Pierobon P, Reversat A, Lennon-Duménil AM. How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol. 2013;13(7):475–486. doi: 10.1038/nri3469
  8. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575–581. doi: 10.1038/302575a0
  9. Upasani V, Rodenhuis-Zybert I, Cantaert T. Antibody-independent functions of B cells during viral infections. PLoS Pathog. 2021;17(7):e1009708. doi: 10.1371/journal.ppat.1009708 EDN: SPYBUI
  10. Klasse PJ. Neutralization of virus infectivity by antibodies: old problems in new perspectives. Adv Biol. 2014:157895. doi: 10.1155/2014/157895
  11. Kim SJ, Park Y, Hong HJ. Antibody engineering for the development of therapeutic antibodies. Mol Cells. 2005;20(1):17–29. doi: 10.1016/S1016-8478(23)25245-0
  12. Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–774. doi: 10.1038/nrd3229
  13. Both L, Banyard AC, van Dolleweerd C, et al. Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Vaccine. 2013;31(12):1553–1559. doi: 10.1016/j.vaccine.2013.01.025
  14. Goulet DR, Atkins WM. Considerations for the design of antibody-based therapeutics. J Pharm Sci. 2020;109(1):74–103. doi: 10.1016/j.xphs.2019.05.031 EDN: RLDGGZ
  15. Tiller KE, Tessier PM. Advances in antibody design. Annu Rev Biomed Eng. 2015;17:191–216. doi: 10.1146/annurev-bioeng-071114-040733
  16. Power CA, Bates A. David vs. Goliath: the structure, function, and clinical prospects of antibody fragments. Antibodies (Basel). 2019;8(2):28. doi: 10.3390/antib8020028
  17. Strohl WR. Structure and function of therapeutic antibodies approved by the US FDA in 2023. Antib Ther. 2024;7(2):132–156. doi: 10.1093/abt/tbae007 EDN: MRPFVR
  18. Mokhtary P, Pourhashem Z, Mehrizi AA, et al. Recent progress in the discovery and development of monoclonal antibodies against viral infections. Biomedicines. 2022;10(8):1861. doi: 10.3390/biomedicines10081861 EDN: GYIZII
  19. Sivapalasingam S, Kamal M, Slim R, et al. Safety, pharmacokinetics, and immunogenicity of a co-formulated cocktail of three human monoclonal antibodies targeting Ebola virus glycoprotein in healthy adults: a randomised, first-in-human phase 1 study. Lancet Infect Dis. 2018;18(8):884–893. doi: 10.1016/S1473-3099(18)30397-9
  20. Akinosoglou K, Rigopoulos EA, Kaiafa G, et al. Tixagevimab/cilgavimab in SARS-CoV-2 prophylaxis and therapy: a comprehensive review of clinical experience. Viruses. 2022;15(1):118. doi: 10.3390/v15010118 EDN: LMHNVR
  21. Johnson S, Oliver C, Prince GA, et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J Infect Dis. 1997;176(5):1215–1224. doi: 10.1086/514115
  22. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV study group. Pediatrics. 1998;102(3 Pt 1):531–537. doi: 10.1542/peds.102.3.531
  23. Griffin MP, Khan AA, Esser MT, et al. Safety, tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults. Antimicrob Agents Chemother. 2017;61(3):e01714–01716. doi: 10.1128/aac.01714-16
  24. Hammitt LL, Dagan R, Yuan Y, et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants. N Engl J Med. 2022;386(9):837–846. doi: 10.1056/nejmoa2110275 EDN: DGTHEB
  25. Farber HJ, Buckwold FJ, Lachman B, et al. Observed effectiveness of palivizumab for 29-36-week gestation infants. Pediatrics. 2016;138(2):e20160627. doi: 10.1542/peds.2016-0627
  26. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–558. doi: 10.1038/clpt.2008.170
  27. Birch JR, Racher AJ. Antibody production. Adv Drug Deliv Rev. 2006;58(5–6):671–685. doi: 10.1016/j.addr.2005.12.006 EDN: JIEHDA
  28. Schlake T, Thess A, Thran M, Jordan I. mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci. 2019;76(2):301–328. doi: 10.1007/s00018-018-2935-4 EDN: RUIMJP
  29. Van Hoecke L, Roose K. How mRNA therapeutics are entering the monoclonal antibody field. J Transl Med. 2019;17(1):54. doi: 10.1186/s12967-019-1804-8 EDN: UOROET
  30. Deal CE, Carfi A, Plante OJ. Advancements in mRNA encoded antibodies for passive immunotherapy. Vaccines. 2021;9(2):108. doi: 10.3390/vaccines9020108 EDN: IVLMSH
  31. Wang YS, Kumari M, Chen GH, et al. mRNA-based vaccines and therapeutics: an in-depth survey of current and upcoming clinical applications. J Biomed Sci. 2023;30(1):84. doi: 10.1186/s12929-023-00977-5 EDN: CFCPDU
  32. Parhiz H, Atochina-Vasserman EN, Weissman D. mRNA-based therapeutics: looking beyond COVID-19 vaccines. Lancet. 2024;403(10432):1192–1204. doi: 10.1016/S0140-6736(23)02444-3 EDN: RHVMKA
  33. Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther. 2024;9(1):322. doi: 10.1038/s41392-024-02002-z EDN: CLBRYH
  34. Pardi N, Krammer F. mRNA vaccines for infectious diseases — advances, challenges and opportunities. Nat Rev Drug Discov. 2024;23(11):838–861. doi: 10.1038/s41573-024-01042-y EDN: DWHRAZ
  35. Sahin U, Karikó K, Türeci Ö. MRNA-based therapeutics — developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–780. doi: 10.1038/nrd4278
  36. Hou X, Shi J, Xiao Y. mRNA medicine: recent progresses in chemical modification, design, and engineering. Nano Res. 2024;17(10):9015–9030. doi: 10.1007/s12274-024-6978-6 EDN: DCGZWI
  37. Orlandini von Niessen AG, Poleganov MA, Rechner C, et al. Improving mRNA-Based therapeutic gene delivery by expression-augmenting 3ʹ UTRs identified by cellular library screening. Mol Ther. 2019;27(4):824–836. doi: 10.1016/j.ymthe.2018.12.011
  38. Mamaghani S, Penna RR, Frei J, et al. Synthetic mRNAs containing minimalistic untranslated regions are highly functional in vitro and in vivo. Cells. 2024;13(15):1242. doi: 10.3390/cells13151242 EDN: VWPUAC
  39. Leppek K, Das R, Barna M. Functional 5ʹ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018;19(3):158–174. doi: 10.1038/nrm.2017.103 EDN: YECJLV
  40. Nelson J, Sorensen EW, Mintri S, et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci Adv. 2020;6(26):eaaz6893. doi: 10.1126/sciadv.aaz6893 EDN: ZWDMKE
  41. Verbeke R, Hogan MJ, Loré K, Pardi N. Innate immune mechanisms of mRNA vaccines. Immunity. 2022;55(11):1993–2005. doi: 10.1016/j.immuni.2022.10.014 EDN: KBSXUM
  42. Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–175. doi: 10.1016/j.immuni.2005.06.008
  43. Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–1840. doi: 10.1038/mt.2008.200
  44. Anderson BR, Muramatsu H, Nallagatla SR, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010;38(17):5884–5892. doi: 10.1093/nar/gkq347 EDN: NZEKMZ
  45. Kormann MSD, Hasenpusch G, Aneja MK, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol. 2011;29(2):154–157. doi: 10.1038/nbt.1733 EDN: OAIXEF
  46. Qin S, Tang X, Chen Y, et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther. 2022;7(1):166. doi: 10.1038/s41392-022-01007-w EDN: DVAMRC
  47. Karikó K, Weissman D. Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development. Curr Opin Drug Discov Dev. 2007;10(5):523–532.
  48. Karikó K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004;279(13):12542–12550. doi: 10.1074/jbc.M310175200
  49. Karikó K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011;39(21):e142. doi: 10.1093/nar/gkr695
  50. Baiersdörfer M, Boros G, Muramatsu H, et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol Ther Nucleic Acids. 2019;15:26–35. doi: 10.1016/j.omtn.2019.02.018
  51. Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–448. doi: 10.1038/363446a0
  52. Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007;77(1):13–22. doi: 10.1007/s00253-007-1142-2 EDN: MLPEJD
  53. Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–797. doi: 10.1146/annurev-biochem-063011-092449 EDN: RMCHVP
  54. Rabbitts TH. Intracellular antibodies for drug discovery and as drugs of the future. Antibodies (Basel). 2023;12(1):24. doi: 10.3390/antib12010024 EDN: GFWHLG
  55. Lorenz C, Fotin-Mleczek M, Roth G, et al. Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol. 2011;8(4):627–636. doi: 10.4161/rna.8.4.15394
  56. Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther. 2019;27(4):710–728. doi: 10.1016/j.ymthe.2019.02.012 EDN: QMWQWY
  57. Pardi N, Tuyishime S, Muramatsu H, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release. 2015;217:345–351. doi: 10.1016/j.jconrel.2015.08.007
  58. Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–1094. doi: 10.1038/s41578-021-00358-0 EDN: WGZZCB
  59. Vasileva O, Zaborova O, Shmykov B, et al. Composition of lipid nanoparticles for targeted delivery: application to mRNA therapeutics. Front Pharmacol. 2024;15:1466337. doi: 10.3389/fphar.2024.1466337 EDN: DGNZPT
  60. Kulkarni JA, Witzigmann D, Chen S, et al. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res. 2019;52(9):2435–2444. doi: 10.1021/acs.accounts.9b00368
  61. Cheng Q, Wei T, Farbiak L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020;15(4):313–320. doi: 10.1038/s41565-020-0669-6 EDN: NNRWEO
  62. Tiwari PM, Vanover D, Lindsay KE, et al. Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection. Nat Commun. 2018;9(1)3999. doi: 10.1038/s41467-018-06508-3 EDN: UDXCUN
  63. Pyzik M, Sand KMK, Hubbard JJ, et al. The neonatal Fc receptor (FcRn): a misnomer? Front Immunol. 2019;10:1540. doi: 10.3389/fimmu.2019.01540 EDN: CAAJSX
  64. Chung C, Kudchodkar SB, Chung CN, et al. Expanding the reach of monoclonal antibodies: a review of synthetic nucleic acid delivery in immunotherapy. Antibodies (Basel). 2023;12(3):46. doi: 10.3390/antib12030046 EDN: SJMSML
  65. Zhao Y, Gan L, Ke D, et al. Mechanisms and research advances in mRNA antibody drug-mediated passive immunotherapy. J Transl Med. 2023;21(1):693. doi: 10.1186/s12967-023-04553-1 EDN: HSDDLG
  66. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–497. doi: 10.1038/256495a0
  67. Nadler LM, Stashenko P, Hardy R, et al. Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res. 1980;40(9):3147–3154.
  68. Burke B, Warren G. Microinjection of mRNA coding for an anti-golgi antibody inhibits intracellular transport of a viral membrane protein. Cell. 1984;36(4):847–856. doi: 10.1016/0092-8674(84)90034-5
  69. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–1468. doi: 10.1126/science.1690918
  70. No. US12/522,214. 2008. Hoerr I, Probst J, Pascolo S. RNA-coded antibody. United States patent https://patents.google.com/patent/US11421038B2/en
  71. Pardi N, Secreto AJ, Shan X, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:14630. doi: 10.1038/ncomms14630
  72. Wu X, Yang ZY, Li Y, et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science. 2010;329(5993):856–861. doi: 10.1126/science.1187659
  73. Safety, tolerability, pharmacokinetics, and pharmacodynamics of mRNA-1944 in healthy adults. In: ClinicalTrials [Internet]. Available from: https://clinicaltrials.gov/study/NCT03829384 Accessed: Sept 16, 2025.
  74. Kose N, Fox JM, Sapparapu G, et al. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Sci Immunol. 2019;4(35):eaaw6647. doi: 10.1126/sciimmunol.aaw6647
  75. August A, Attarwala HZ, Himansu S, et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat Med. 2021;27(12):2224–2233. doi: 10.1038/s41591-021-01573-6 EDN: UGWWQK
  76. Thran M, Mukherjee J, Pönisch M, et al. mRNA mediates passive vaccination against infectious agents, toxins, and tumors. EMBO Mol Med. 2017;9(10):1434–1447. doi: 10.15252/emmm.201707678 EDN: YJOQVG
  77. Prosniak M, Faber M, Hanlon CA, et al. Development of a cocktail of recombinant-expressed human rabies virus-neutralizing monoclonal antibodies for postexposure prophylaxis of rabies. J Infect Dis. 2003;188(1):53–56. doi: 10.1086/375247
  78. Dreyfus C, Laursen NS, Kwaks T, et al. Highly conserved protective epitopes on influenza B viruses. Science. 2012;337(6100):1343–1348. doi: 10.1126/science.1222908
  79. Griffiths C, Drews SJ, Marchant DJ. Respiratory syncytial virus: infection, detection, and new options for prevention and treatment. Clin Microbiol Rev. 2017;30(1):277–319. doi: 10.1128/CMR.00010-16 EDN: YXAMQJ
  80. Rossey I, Gilman MSA, Kabeche SC, et al. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nat Commun. 2017;8:14158. doi: 10.1038/ncomms14158
  81. Lindsay KE, Vanover D, Thoresen M, et al. Aerosol delivery of synthetic mRNA to vaginal mucosa leads to durable expression of broadly neutralizing antibodies against HIV. Mol Ther. 2020;28(3):805–819. doi: 10.1016/j.ymthe.2020.01.002 EDN: QGOQYE
  82. Moldt B, Rakasz EG, Schultz N, et al. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc Natl Acad Sci U S A. 2012;109(46):18921–18925. doi: 10.1073/pnas.1214785109
  83. Narayanan E, Falcone S, Elbashir SM, et al. Rational design and in vivo characterization of mRNA-encoded broadly neutralizing antibody combinations against HIV-1. Antibodies (Basel). 2022;11(4):67. doi: 10.3390/antib11040067 EDN: OYNZNY
  84. Sok D, van Gils MJ, Pauthner M, et al. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proc Natl Acad Sci U S A. 2014;111(49):17624–17629. doi: 10.1073/pnas.1415789111
  85. Mouquet H, Scharf L, Euler Z, et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc Natl Acad Sci U S A. 2012;109(47):E3268–3277. doi: 10.1073/pnas.1217207109
  86. Huang J, Kang BH, Ishida E, et al. Identification of a CD4-Binding-Site antibody to HIV that evolved near-pan neutralization breadth. Immunity. 2016;45(5):1108–1121. doi: 10.1016/j.immuni.2016.10.027
  87. Dickie P, Felser J, Eckhaus M, et al. HIV-associated nephropathy in transgenic mice expressing HIV-1 genes. Virology. 1991;185(1):109–119. doi: 10.1016/0042-6822(91)90759-5
  88. Geall AJ, Verma A, Otten GR, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A. 2012;109(36):14604–14609. doi: 10.1073/pnas.1209367109
  89. Erasmus JH, Archer J, Fuerte-Stone J, et al. Intramuscular delivery of replicon RNA encoding ZIKV-117 human monoclonal antibody protects against Zika virus infection. Mol Ther Methods Clin Dev. 2020;18:402–414. doi: 10.1016/j.omtm.2020.06.011 EDN: YGTGTW
  90. Sapparapu G, Fernandez E, Kose N, et al. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature. 2016;540(7633):443–447. doi: 10.1038/nature20564
  91. Frolov I, Hoffman TA, Prágai BM, et al. Alphavirus-based expression vectors: strategies and applications. Proc Natl Acad Sci U S A. 1996;93(21):11371–11377. doi: 10.1073/pnas.93.21.11371
  92. Lazear HM, Govero J, Smith AM, et al. A mouse model of Zika virus pathogenesis. Cell Host Microbe. 2016;19(5):720–730. doi: 10.1016/j.chom.2016.03.010
  93. Van Hoecke L, Verbeke R, De Vlieger D, et al. mRNA encoding a bispecific single domain antibody construct protects against influenza A virus infection in mice. Mol Ther Nucleic Acids. 2020;20:777–787. doi: 10.1016/j.omtn.2020.04.015 EDN: PQOOWQ
  94. De Vlieger D, Hoffmann K, Van Molle I, et al. Selective engagement of FcγRIV by a M2e-specific single domain antibody construct protects against influenza A virus infection. Front Immunol. 2019;10:2920. doi: 10.3389/fimmu.2019.02920 EDN: EGSFKT
  95. Suurs F V, Lub-de Hooge MN, de Vries EGE, de Groot DJA. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther. 2019;201:103–119. doi: 10.1016/j.pharmthera.2019.04.006 EDN: LCRPKH
  96. Li JQ, Zhang ZR, Zhang HQ, et al. Intranasal delivery of replicating mRNA encoding neutralizing antibody against SARS-CoV-2 infection in mice. Signal Transduct Target Ther. 2021;6(1):369. doi: 10.1038/s41392-021-00783-1 EDN: JBYTGJ
  97. Shi R, Shan C, Duan X, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature. 2020;584(7819):120–124. doi: 10.1038/s41586-020-2381-y EDN: FLFOYB
  98. Chen Y, Zhang YN, Yan R, et al. ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Signal Transduct Target Ther. 2021;6(1):315. doi: 10.1038/s41392-021-00740-y EDN: BBRKDL
  99. Zhang YN, Zhang HQ, Wang GF, et al. Intranasal delivery of replicating mRNA encoding hACE2-targeting antibody against SARS-CoV-2 Omicron infection in the hamster. Antiviral Res. 2023;209:105507. doi: 10.1016/j.antiviral.2022.105507 EDN: XMENRO
  100. Deng YQ, Zhang NN, Zhang YF, et al. Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters. Cell Res. 2022;32(4):375–382. doi: 10.1038/s41422-022-00630-0 EDN: LPWZUG
  101. Zhu L, Deng YQ, Zhang RR, et al. Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2. Natl Sci Rev. 2020;8(3):nwaa297. doi: 10.1093/nsr/nwaa297 EDN: LJUWZA
  102. Zost SJ, Gilchuk P, Case JB, et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature. 2020;584(7821):443–449. doi: 10.1038/s41586-020-2548-6 EDN: GNZVGO
  103. Li D, Edwards RJ, Manne K, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 2021;184(16):4203–4219.e32. doi: 10.1016/j.cell.2021.06.021 EDN: ODXMVL
  104. Vanover D, Zurla C, Peck HE, et al. Nebulized mRNA-encoded antibodies protect hamsters from SARS-CoV-2 infection. Adv Sci (Weinh). 2022;9(34):e2202771. doi: 10.1002/advs.202202771 EDN: PPJTOV
  105. Rotolo L, Vanover D, Bruno NC, et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat Mater. 2023;22(3):369–379. doi: 10.1038/s41563-022-01404-0 EDN: LFAZNU
  106. Tai W, Yang K, Liu Y, et al. A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection. Nat Commun. 2023;14(1):8042. doi: 10.1038/s41467-023-43798-8 EDN: IYJVMT
  107. Zhang Y, Tian C, Yu X, et al. Lung-selective delivery of mrna-encoding anti-MERS-CoV nanobody exhibits neutralizing activity both in vitro and in vivo. Vaccines (Basel). 2024;12(12):1315. doi: 10.3390/vaccines12121315 EDN: XNSKXJ
  108. Zhao G, He L, Sun S, et al. A novel nanobody targeting middle east respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV. J Virol. 2018;92(18):e00837-18. doi: 10.1128/JVI.00837-18
  109. Chen B, Chen Y, Li J, et al. A single dose of anti-HBsAg antibody-encoding mRNA-LNPs suppressed HBsAg expression: a potential cure of chronic hepatitis B virus infection. mBio. 2022;13(4):e0161222. doi: 10.1128/mbio.01612-22 EDN: AXBZPA
  110. Wang W, Sun L, Li T, et al. A human monoclonal antibody against small envelope protein of hepatitis B virus with potent neutralization effect. MAbs. 2016;8(3):468–477. doi: 10.1080/19420862.2015.1134409
  111. Mucker EM, Thiele-Suess C, Baumhof P, Hooper JW. Lipid nanoparticle delivery of unmodified mRNAs encoding multiple monoclonal antibodies targeting poxviruses in rabbits. Mol Ther Nucleic Acids. 2022;28:847–858. doi: 10.1016/j.omtn.2022.05.025 EDN: KHZHFW
  112. Wolffe EJ, Vijaya S, Moss B. A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology. 1995;211(1):53–63. doi: 10.1006/viro.1995.1378
  113. Chen Z, Earl P, Americo J, et al. Chimpanzee/human mAbs to vaccinia virus B5 protein neutralize vaccinia and smallpox viruses and protect mice against vaccinia virus. Proc Natl Acad Sci U S A. 2006;103(6):1882–1887. doi: 10.1073/pnas.0510598103
  114. Chen Z, Earl P, Americo J, et al. Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model. J Virol. 2007;81(17):8989–8995. doi: 10.1128/JVI.00906-07
  115. Chi H, Zhao SQ, Chen RY, et al. Rapid development of double-hit mRNA antibody cocktail against orthopoxviruses. Signal Transduct Target Ther. 2024;9(1):69. doi: 10.1038/s41392-024-01766-8
  116. Fan P, Sun B, Liu Z, et al. A pan-orthoebolavirus neutralizing antibody encoded by mRNA effectively prevents virus infection. Emerg Microbes Infect. 2024;13(1):2432366. doi: 10.1080/22221751.2024.2432366 EDN: RHZKHK
  117. Fan P, Chi X, Liu G, et al. Potent neutralizing monoclonal antibodies against Ebola virus isolated from vaccinated donors. MAbs. 2020;12(1):1742457. doi: 10.1080/19420862.2020.1742457 EDN: NZKRWW
  118. Monoclonal antibody A38 for resisting Valley fever virus and application [Internet]. 2024. p. CN114605528B. https://patents.google.com/patent/CN114605528B/en
  119. Wang S, Zhu Z, Li J. Pharmacokinetic analyses of a lipid nanoparticle-encapsulated mRNA-encoded antibody against rift valley fever virus. Mol Pharm. 2024;21(3):1342–1352. doi: 10.1021/acs.molpharmaceut.3c01016 EDN: DXUHLH
  120. Sabnis S, Kumarasinghe ES, Salerno T, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther. 2018;26(6):1509–1519. doi: 10.1016/j.ymthe.2018.03.010 EDN: VGASBP

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).