Терапевтический потенциал экзогенных мРНК, кодирующих рекомбинантные антитела против возбудителей вирусных инфекций
- Авторы: Клотченко С.А.1, Плотникова М.А.1
-
Учреждения:
- Научно-исследовательский институт гриппа им. А.А. Смородинцева
- Выпуск: Том 25, № 3 (2025)
- Страницы: 31-46
- Раздел: Аналитические обзоры
- URL: https://journals.rcsi.science/MAJ/article/view/380134
- DOI: https://doi.org/10.17816/MAJ642736
- EDN: https://elibrary.ru/LGOOSO
- ID: 380134
Цитировать
Аннотация
Антитела, продуцируемые иммунной системой человека в ответ на вакцинацию или инвазию патогена, представляют собой существенный, а иногда и единственный инструмент борьбы с вирусными инфекциями. Научные и технологические достижения позволили вывести на биофармацевтический рынок новый класс противовирусных препаратов, являющихся терапевтическими рекомбинантными моноклональными антителами. Однако их потенциал сильно ограничен ввиду невысокой стабильности и агрегации рекомбинантных антител, а также высоких затрат на получение и очистку. За последнее десятилетие технология транзиторной (временной) экспрессии белка in vivo путем доставки в клетки-мишени экзогенной кодирующей его мРНК получила самое широкое распространение. Экзогенные мРНК, кодирующие рекомбинантные антитела, могут обеспечивать стабильную, продолжительную и безопасную трансляцию как полноразмерных антител, так и их разнообразных укороченных форм. Кроме того, мРНК-технологии позволяют реализовывать подходы к разработке новых форм протективных антител, например, внутриклеточных или заякоренных в мембранах конкретных клеток-мишеней. Только за 2024 г. было опубликовано свыше тысячи научных работ, посвященных разработке и использованию мРНК в качестве вакцинных и терапевтических препаратов. В представленном обзоре рассмотрены современные экспериментальные препараты на основе мРНК-кодируемых антител, которые обладают защитными свойствами в отношении вирусных патогенов.
Об авторах
Сергей Анатольевич Клотченко
Научно-исследовательский институт гриппа им. А.А. Смородинцева
Автор, ответственный за переписку.
Email: fosfatik@mail.ru
ORCID iD: 0000-0003-0289-6560
SPIN-код: 2632-6195
Россия, Санкт-Петербург
Марина Александровна Плотникова
Научно-исследовательский институт гриппа им. А.А. Смородинцева
Email: biomalinka@mail.ru
ORCID iD: 0000-0001-8196-3156
SPIN-код: 2986-9850
Россия, Санкт-Петербург
Список литературы
- Jin X, Ren J, Li R, et al. Global burden of upper respiratory infections in 204 countries and territories, from 1990 to 2019. EClinicalMedicine. 2021;37:100986. doi: 10.1016/j.eclinm.2021.100986 EDN: IFEDZD
- Roth GA, Picece VCTM, Ou BS, et al. Designing spatial and temporal control of vaccine responses. Nat Rev Mater. 2022;7(3):174–195. doi: 10.1038/s41578-021-00372-2 EDN: VBXTGB
- Mao T, Kim J, Peña-Hernández MA, et al. Intranasal neomycin evokes broad- spectrum antiviral immunity in the upper respiratory tract. Proc Natl Acad Sci U S A. 2024;121(18):e2319566121. doi: 10.1073/pnas.2319566121 EDN: ATDKNV
- Law GL, Korth MJ, Benecke AG, Katze MG. Systems virology: host-directed approaches to viral pathogenesis and drug targeting. Nat Rev Microbiol. 2013;11(7):455–466. doi: 10.1038/nrmicro3036 EDN: RNULCL
- Casadevall A, Dadachova E, Pirofski LA. Passive antibody therapy for infectious diseases. Nat Rev Microbiol. 2004;2(9):695–703. doi: 10.1038/nrmicro974
- Buss NA, Henderson SJ, McFarlane M, et al. Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol. 2012;12(5):615–622. doi: 10.1016/j.coph.2012.08.001
- Yuseff MI, Pierobon P, Reversat A, Lennon-Duménil AM. How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol. 2013;13(7):475–486. doi: 10.1038/nri3469
- Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575–581. doi: 10.1038/302575a0
- Upasani V, Rodenhuis-Zybert I, Cantaert T. Antibody-independent functions of B cells during viral infections. PLoS Pathog. 2021;17(7):e1009708. doi: 10.1371/journal.ppat.1009708 EDN: SPYBUI
- Klasse PJ. Neutralization of virus infectivity by antibodies: old problems in new perspectives. Adv Biol. 2014:157895. doi: 10.1155/2014/157895
- Kim SJ, Park Y, Hong HJ. Antibody engineering for the development of therapeutic antibodies. Mol Cells. 2005;20(1):17–29. doi: 10.1016/S1016-8478(23)25245-0
- Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–774. doi: 10.1038/nrd3229
- Both L, Banyard AC, van Dolleweerd C, et al. Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Vaccine. 2013;31(12):1553–1559. doi: 10.1016/j.vaccine.2013.01.025
- Goulet DR, Atkins WM. Considerations for the design of antibody-based therapeutics. J Pharm Sci. 2020;109(1):74–103. doi: 10.1016/j.xphs.2019.05.031 EDN: RLDGGZ
- Tiller KE, Tessier PM. Advances in antibody design. Annu Rev Biomed Eng. 2015;17:191–216. doi: 10.1146/annurev-bioeng-071114-040733
- Power CA, Bates A. David vs. Goliath: the structure, function, and clinical prospects of antibody fragments. Antibodies (Basel). 2019;8(2):28. doi: 10.3390/antib8020028
- Strohl WR. Structure and function of therapeutic antibodies approved by the US FDA in 2023. Antib Ther. 2024;7(2):132–156. doi: 10.1093/abt/tbae007 EDN: MRPFVR
- Mokhtary P, Pourhashem Z, Mehrizi AA, et al. Recent progress in the discovery and development of monoclonal antibodies against viral infections. Biomedicines. 2022;10(8):1861. doi: 10.3390/biomedicines10081861 EDN: GYIZII
- Sivapalasingam S, Kamal M, Slim R, et al. Safety, pharmacokinetics, and immunogenicity of a co-formulated cocktail of three human monoclonal antibodies targeting Ebola virus glycoprotein in healthy adults: a randomised, first-in-human phase 1 study. Lancet Infect Dis. 2018;18(8):884–893. doi: 10.1016/S1473-3099(18)30397-9
- Akinosoglou K, Rigopoulos EA, Kaiafa G, et al. Tixagevimab/cilgavimab in SARS-CoV-2 prophylaxis and therapy: a comprehensive review of clinical experience. Viruses. 2022;15(1):118. doi: 10.3390/v15010118 EDN: LMHNVR
- Johnson S, Oliver C, Prince GA, et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J Infect Dis. 1997;176(5):1215–1224. doi: 10.1086/514115
- Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV study group. Pediatrics. 1998;102(3 Pt 1):531–537. doi: 10.1542/peds.102.3.531
- Griffin MP, Khan AA, Esser MT, et al. Safety, tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults. Antimicrob Agents Chemother. 2017;61(3):e01714–01716. doi: 10.1128/aac.01714-16
- Hammitt LL, Dagan R, Yuan Y, et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants. N Engl J Med. 2022;386(9):837–846. doi: 10.1056/nejmoa2110275 EDN: DGTHEB
- Farber HJ, Buckwold FJ, Lachman B, et al. Observed effectiveness of palivizumab for 29-36-week gestation infants. Pediatrics. 2016;138(2):e20160627. doi: 10.1542/peds.2016-0627
- Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–558. doi: 10.1038/clpt.2008.170
- Birch JR, Racher AJ. Antibody production. Adv Drug Deliv Rev. 2006;58(5–6):671–685. doi: 10.1016/j.addr.2005.12.006 EDN: JIEHDA
- Schlake T, Thess A, Thran M, Jordan I. mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci. 2019;76(2):301–328. doi: 10.1007/s00018-018-2935-4 EDN: RUIMJP
- Van Hoecke L, Roose K. How mRNA therapeutics are entering the monoclonal antibody field. J Transl Med. 2019;17(1):54. doi: 10.1186/s12967-019-1804-8 EDN: UOROET
- Deal CE, Carfi A, Plante OJ. Advancements in mRNA encoded antibodies for passive immunotherapy. Vaccines. 2021;9(2):108. doi: 10.3390/vaccines9020108 EDN: IVLMSH
- Wang YS, Kumari M, Chen GH, et al. mRNA-based vaccines and therapeutics: an in-depth survey of current and upcoming clinical applications. J Biomed Sci. 2023;30(1):84. doi: 10.1186/s12929-023-00977-5 EDN: CFCPDU
- Parhiz H, Atochina-Vasserman EN, Weissman D. mRNA-based therapeutics: looking beyond COVID-19 vaccines. Lancet. 2024;403(10432):1192–1204. doi: 10.1016/S0140-6736(23)02444-3 EDN: RHVMKA
- Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther. 2024;9(1):322. doi: 10.1038/s41392-024-02002-z EDN: CLBRYH
- Pardi N, Krammer F. mRNA vaccines for infectious diseases — advances, challenges and opportunities. Nat Rev Drug Discov. 2024;23(11):838–861. doi: 10.1038/s41573-024-01042-y EDN: DWHRAZ
- Sahin U, Karikó K, Türeci Ö. MRNA-based therapeutics — developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–780. doi: 10.1038/nrd4278
- Hou X, Shi J, Xiao Y. mRNA medicine: recent progresses in chemical modification, design, and engineering. Nano Res. 2024;17(10):9015–9030. doi: 10.1007/s12274-024-6978-6 EDN: DCGZWI
- Orlandini von Niessen AG, Poleganov MA, Rechner C, et al. Improving mRNA-Based therapeutic gene delivery by expression-augmenting 3ʹ UTRs identified by cellular library screening. Mol Ther. 2019;27(4):824–836. doi: 10.1016/j.ymthe.2018.12.011
- Mamaghani S, Penna RR, Frei J, et al. Synthetic mRNAs containing minimalistic untranslated regions are highly functional in vitro and in vivo. Cells. 2024;13(15):1242. doi: 10.3390/cells13151242 EDN: VWPUAC
- Leppek K, Das R, Barna M. Functional 5ʹ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018;19(3):158–174. doi: 10.1038/nrm.2017.103 EDN: YECJLV
- Nelson J, Sorensen EW, Mintri S, et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci Adv. 2020;6(26):eaaz6893. doi: 10.1126/sciadv.aaz6893 EDN: ZWDMKE
- Verbeke R, Hogan MJ, Loré K, Pardi N. Innate immune mechanisms of mRNA vaccines. Immunity. 2022;55(11):1993–2005. doi: 10.1016/j.immuni.2022.10.014 EDN: KBSXUM
- Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–175. doi: 10.1016/j.immuni.2005.06.008
- Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–1840. doi: 10.1038/mt.2008.200
- Anderson BR, Muramatsu H, Nallagatla SR, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010;38(17):5884–5892. doi: 10.1093/nar/gkq347 EDN: NZEKMZ
- Kormann MSD, Hasenpusch G, Aneja MK, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol. 2011;29(2):154–157. doi: 10.1038/nbt.1733 EDN: OAIXEF
- Qin S, Tang X, Chen Y, et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther. 2022;7(1):166. doi: 10.1038/s41392-022-01007-w EDN: DVAMRC
- Karikó K, Weissman D. Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development. Curr Opin Drug Discov Dev. 2007;10(5):523–532.
- Karikó K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004;279(13):12542–12550. doi: 10.1074/jbc.M310175200
- Karikó K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011;39(21):e142. doi: 10.1093/nar/gkr695
- Baiersdörfer M, Boros G, Muramatsu H, et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol Ther Nucleic Acids. 2019;15:26–35. doi: 10.1016/j.omtn.2019.02.018
- Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–448. doi: 10.1038/363446a0
- Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007;77(1):13–22. doi: 10.1007/s00253-007-1142-2 EDN: MLPEJD
- Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–797. doi: 10.1146/annurev-biochem-063011-092449 EDN: RMCHVP
- Rabbitts TH. Intracellular antibodies for drug discovery and as drugs of the future. Antibodies (Basel). 2023;12(1):24. doi: 10.3390/antib12010024 EDN: GFWHLG
- Lorenz C, Fotin-Mleczek M, Roth G, et al. Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol. 2011;8(4):627–636. doi: 10.4161/rna.8.4.15394
- Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther. 2019;27(4):710–728. doi: 10.1016/j.ymthe.2019.02.012 EDN: QMWQWY
- Pardi N, Tuyishime S, Muramatsu H, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release. 2015;217:345–351. doi: 10.1016/j.jconrel.2015.08.007
- Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–1094. doi: 10.1038/s41578-021-00358-0 EDN: WGZZCB
- Vasileva O, Zaborova O, Shmykov B, et al. Composition of lipid nanoparticles for targeted delivery: application to mRNA therapeutics. Front Pharmacol. 2024;15:1466337. doi: 10.3389/fphar.2024.1466337 EDN: DGNZPT
- Kulkarni JA, Witzigmann D, Chen S, et al. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res. 2019;52(9):2435–2444. doi: 10.1021/acs.accounts.9b00368
- Cheng Q, Wei T, Farbiak L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020;15(4):313–320. doi: 10.1038/s41565-020-0669-6 EDN: NNRWEO
- Tiwari PM, Vanover D, Lindsay KE, et al. Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection. Nat Commun. 2018;9(1)3999. doi: 10.1038/s41467-018-06508-3 EDN: UDXCUN
- Pyzik M, Sand KMK, Hubbard JJ, et al. The neonatal Fc receptor (FcRn): a misnomer? Front Immunol. 2019;10:1540. doi: 10.3389/fimmu.2019.01540 EDN: CAAJSX
- Chung C, Kudchodkar SB, Chung CN, et al. Expanding the reach of monoclonal antibodies: a review of synthetic nucleic acid delivery in immunotherapy. Antibodies (Basel). 2023;12(3):46. doi: 10.3390/antib12030046 EDN: SJMSML
- Zhao Y, Gan L, Ke D, et al. Mechanisms and research advances in mRNA antibody drug-mediated passive immunotherapy. J Transl Med. 2023;21(1):693. doi: 10.1186/s12967-023-04553-1 EDN: HSDDLG
- Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–497. doi: 10.1038/256495a0
- Nadler LM, Stashenko P, Hardy R, et al. Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res. 1980;40(9):3147–3154.
- Burke B, Warren G. Microinjection of mRNA coding for an anti-golgi antibody inhibits intracellular transport of a viral membrane protein. Cell. 1984;36(4):847–856. doi: 10.1016/0092-8674(84)90034-5
- Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–1468. doi: 10.1126/science.1690918
- No. US12/522,214. 2008. Hoerr I, Probst J, Pascolo S. RNA-coded antibody. United States patent https://patents.google.com/patent/US11421038B2/en
- Pardi N, Secreto AJ, Shan X, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:14630. doi: 10.1038/ncomms14630
- Wu X, Yang ZY, Li Y, et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science. 2010;329(5993):856–861. doi: 10.1126/science.1187659
- Safety, tolerability, pharmacokinetics, and pharmacodynamics of mRNA-1944 in healthy adults. In: ClinicalTrials [Internet]. Available from: https://clinicaltrials.gov/study/NCT03829384 Accessed: Sept 16, 2025.
- Kose N, Fox JM, Sapparapu G, et al. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Sci Immunol. 2019;4(35):eaaw6647. doi: 10.1126/sciimmunol.aaw6647
- August A, Attarwala HZ, Himansu S, et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat Med. 2021;27(12):2224–2233. doi: 10.1038/s41591-021-01573-6 EDN: UGWWQK
- Thran M, Mukherjee J, Pönisch M, et al. mRNA mediates passive vaccination against infectious agents, toxins, and tumors. EMBO Mol Med. 2017;9(10):1434–1447. doi: 10.15252/emmm.201707678 EDN: YJOQVG
- Prosniak M, Faber M, Hanlon CA, et al. Development of a cocktail of recombinant-expressed human rabies virus-neutralizing monoclonal antibodies for postexposure prophylaxis of rabies. J Infect Dis. 2003;188(1):53–56. doi: 10.1086/375247
- Dreyfus C, Laursen NS, Kwaks T, et al. Highly conserved protective epitopes on influenza B viruses. Science. 2012;337(6100):1343–1348. doi: 10.1126/science.1222908
- Griffiths C, Drews SJ, Marchant DJ. Respiratory syncytial virus: infection, detection, and new options for prevention and treatment. Clin Microbiol Rev. 2017;30(1):277–319. doi: 10.1128/CMR.00010-16 EDN: YXAMQJ
- Rossey I, Gilman MSA, Kabeche SC, et al. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nat Commun. 2017;8:14158. doi: 10.1038/ncomms14158
- Lindsay KE, Vanover D, Thoresen M, et al. Aerosol delivery of synthetic mRNA to vaginal mucosa leads to durable expression of broadly neutralizing antibodies against HIV. Mol Ther. 2020;28(3):805–819. doi: 10.1016/j.ymthe.2020.01.002 EDN: QGOQYE
- Moldt B, Rakasz EG, Schultz N, et al. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc Natl Acad Sci U S A. 2012;109(46):18921–18925. doi: 10.1073/pnas.1214785109
- Narayanan E, Falcone S, Elbashir SM, et al. Rational design and in vivo characterization of mRNA-encoded broadly neutralizing antibody combinations against HIV-1. Antibodies (Basel). 2022;11(4):67. doi: 10.3390/antib11040067 EDN: OYNZNY
- Sok D, van Gils MJ, Pauthner M, et al. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proc Natl Acad Sci U S A. 2014;111(49):17624–17629. doi: 10.1073/pnas.1415789111
- Mouquet H, Scharf L, Euler Z, et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc Natl Acad Sci U S A. 2012;109(47):E3268–3277. doi: 10.1073/pnas.1217207109
- Huang J, Kang BH, Ishida E, et al. Identification of a CD4-Binding-Site antibody to HIV that evolved near-pan neutralization breadth. Immunity. 2016;45(5):1108–1121. doi: 10.1016/j.immuni.2016.10.027
- Dickie P, Felser J, Eckhaus M, et al. HIV-associated nephropathy in transgenic mice expressing HIV-1 genes. Virology. 1991;185(1):109–119. doi: 10.1016/0042-6822(91)90759-5
- Geall AJ, Verma A, Otten GR, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A. 2012;109(36):14604–14609. doi: 10.1073/pnas.1209367109
- Erasmus JH, Archer J, Fuerte-Stone J, et al. Intramuscular delivery of replicon RNA encoding ZIKV-117 human monoclonal antibody protects against Zika virus infection. Mol Ther Methods Clin Dev. 2020;18:402–414. doi: 10.1016/j.omtm.2020.06.011 EDN: YGTGTW
- Sapparapu G, Fernandez E, Kose N, et al. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature. 2016;540(7633):443–447. doi: 10.1038/nature20564
- Frolov I, Hoffman TA, Prágai BM, et al. Alphavirus-based expression vectors: strategies and applications. Proc Natl Acad Sci U S A. 1996;93(21):11371–11377. doi: 10.1073/pnas.93.21.11371
- Lazear HM, Govero J, Smith AM, et al. A mouse model of Zika virus pathogenesis. Cell Host Microbe. 2016;19(5):720–730. doi: 10.1016/j.chom.2016.03.010
- Van Hoecke L, Verbeke R, De Vlieger D, et al. mRNA encoding a bispecific single domain antibody construct protects against influenza A virus infection in mice. Mol Ther Nucleic Acids. 2020;20:777–787. doi: 10.1016/j.omtn.2020.04.015 EDN: PQOOWQ
- De Vlieger D, Hoffmann K, Van Molle I, et al. Selective engagement of FcγRIV by a M2e-specific single domain antibody construct protects against influenza A virus infection. Front Immunol. 2019;10:2920. doi: 10.3389/fimmu.2019.02920 EDN: EGSFKT
- Suurs F V, Lub-de Hooge MN, de Vries EGE, de Groot DJA. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther. 2019;201:103–119. doi: 10.1016/j.pharmthera.2019.04.006 EDN: LCRPKH
- Li JQ, Zhang ZR, Zhang HQ, et al. Intranasal delivery of replicating mRNA encoding neutralizing antibody against SARS-CoV-2 infection in mice. Signal Transduct Target Ther. 2021;6(1):369. doi: 10.1038/s41392-021-00783-1 EDN: JBYTGJ
- Shi R, Shan C, Duan X, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature. 2020;584(7819):120–124. doi: 10.1038/s41586-020-2381-y EDN: FLFOYB
- Chen Y, Zhang YN, Yan R, et al. ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Signal Transduct Target Ther. 2021;6(1):315. doi: 10.1038/s41392-021-00740-y EDN: BBRKDL
- Zhang YN, Zhang HQ, Wang GF, et al. Intranasal delivery of replicating mRNA encoding hACE2-targeting antibody against SARS-CoV-2 Omicron infection in the hamster. Antiviral Res. 2023;209:105507. doi: 10.1016/j.antiviral.2022.105507 EDN: XMENRO
- Deng YQ, Zhang NN, Zhang YF, et al. Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters. Cell Res. 2022;32(4):375–382. doi: 10.1038/s41422-022-00630-0 EDN: LPWZUG
- Zhu L, Deng YQ, Zhang RR, et al. Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2. Natl Sci Rev. 2020;8(3):nwaa297. doi: 10.1093/nsr/nwaa297 EDN: LJUWZA
- Zost SJ, Gilchuk P, Case JB, et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature. 2020;584(7821):443–449. doi: 10.1038/s41586-020-2548-6 EDN: GNZVGO
- Li D, Edwards RJ, Manne K, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 2021;184(16):4203–4219.e32. doi: 10.1016/j.cell.2021.06.021 EDN: ODXMVL
- Vanover D, Zurla C, Peck HE, et al. Nebulized mRNA-encoded antibodies protect hamsters from SARS-CoV-2 infection. Adv Sci (Weinh). 2022;9(34):e2202771. doi: 10.1002/advs.202202771 EDN: PPJTOV
- Rotolo L, Vanover D, Bruno NC, et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat Mater. 2023;22(3):369–379. doi: 10.1038/s41563-022-01404-0 EDN: LFAZNU
- Tai W, Yang K, Liu Y, et al. A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection. Nat Commun. 2023;14(1):8042. doi: 10.1038/s41467-023-43798-8 EDN: IYJVMT
- Zhang Y, Tian C, Yu X, et al. Lung-selective delivery of mrna-encoding anti-MERS-CoV nanobody exhibits neutralizing activity both in vitro and in vivo. Vaccines (Basel). 2024;12(12):1315. doi: 10.3390/vaccines12121315 EDN: XNSKXJ
- Zhao G, He L, Sun S, et al. A novel nanobody targeting middle east respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV. J Virol. 2018;92(18):e00837-18. doi: 10.1128/JVI.00837-18
- Chen B, Chen Y, Li J, et al. A single dose of anti-HBsAg antibody-encoding mRNA-LNPs suppressed HBsAg expression: a potential cure of chronic hepatitis B virus infection. mBio. 2022;13(4):e0161222. doi: 10.1128/mbio.01612-22 EDN: AXBZPA
- Wang W, Sun L, Li T, et al. A human monoclonal antibody against small envelope protein of hepatitis B virus with potent neutralization effect. MAbs. 2016;8(3):468–477. doi: 10.1080/19420862.2015.1134409
- Mucker EM, Thiele-Suess C, Baumhof P, Hooper JW. Lipid nanoparticle delivery of unmodified mRNAs encoding multiple monoclonal antibodies targeting poxviruses in rabbits. Mol Ther Nucleic Acids. 2022;28:847–858. doi: 10.1016/j.omtn.2022.05.025 EDN: KHZHFW
- Wolffe EJ, Vijaya S, Moss B. A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology. 1995;211(1):53–63. doi: 10.1006/viro.1995.1378
- Chen Z, Earl P, Americo J, et al. Chimpanzee/human mAbs to vaccinia virus B5 protein neutralize vaccinia and smallpox viruses and protect mice against vaccinia virus. Proc Natl Acad Sci U S A. 2006;103(6):1882–1887. doi: 10.1073/pnas.0510598103
- Chen Z, Earl P, Americo J, et al. Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model. J Virol. 2007;81(17):8989–8995. doi: 10.1128/JVI.00906-07
- Chi H, Zhao SQ, Chen RY, et al. Rapid development of double-hit mRNA antibody cocktail against orthopoxviruses. Signal Transduct Target Ther. 2024;9(1):69. doi: 10.1038/s41392-024-01766-8
- Fan P, Sun B, Liu Z, et al. A pan-orthoebolavirus neutralizing antibody encoded by mRNA effectively prevents virus infection. Emerg Microbes Infect. 2024;13(1):2432366. doi: 10.1080/22221751.2024.2432366 EDN: RHZKHK
- Fan P, Chi X, Liu G, et al. Potent neutralizing monoclonal antibodies against Ebola virus isolated from vaccinated donors. MAbs. 2020;12(1):1742457. doi: 10.1080/19420862.2020.1742457 EDN: NZKRWW
- Monoclonal antibody A38 for resisting Valley fever virus and application [Internet]. 2024. p. CN114605528B. https://patents.google.com/patent/CN114605528B/en
- Wang S, Zhu Z, Li J. Pharmacokinetic analyses of a lipid nanoparticle-encapsulated mRNA-encoded antibody against rift valley fever virus. Mol Pharm. 2024;21(3):1342–1352. doi: 10.1021/acs.molpharmaceut.3c01016 EDN: DXUHLH
- Sabnis S, Kumarasinghe ES, Salerno T, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther. 2018;26(6):1509–1519. doi: 10.1016/j.ymthe.2018.03.010 EDN: VGASBP
Дополнительные файлы

